
Multiple-view feature modelling and conversion

Willem F. Bronsvoort, Rafael Bidarra, Maurice Dohmen
Winfried van Holland and Klaas Jan de Kraker

Faculty of Technical Mathematics and Informatics, Delft University of Technology
Zuidplantsoen 4, NL-2628 BZ Delft, The Netherlands

email: bronsvoort@twi.tudelft.nl

Abstract. A product model containing information for all product life
cycle activities is central to concurrent engineering. Preferably each ac-
tivity has its own view on the product model, with information relevant
to that activity. In this paper, a feature modelling approach is outlined in
which each view consists of a speci�c feature model, containing features
relevant to the corresponding activity. Attention is paid to the prod-
uct model, feature validation, feature conversion and speci�c assembly
features. Feature validation is the basis for maintaining the meaning of
features. Feature conversion is used to convert features from one view
to other views; multiple-way conversions are possible. As an example of
view-speci�c features, it is shown which assembly-speci�c features can
be included in a feature model for the assembly planning view.

1 INTRODUCTION

Concurrent engineering is a systematic approach to the integrated, concurrent
design of products and their related processes, in particular production processes
[10]. There are two main aspects to concurrent engineering.

The �rst aspect is that already during the design phase of a product, criteria
from downstream product life cycle phases, such as manufacturing and assembly,
are taken into account by considering product properties and available resources.
This is called Design for X (DFX), where the X can stand for any product life
cycle phase. Application of DFX can lead to better product designs, for example
in the sense that they are cheaper to produce and easier to assemble, and to a
reduction in product lead times by eliminating redesign iterations.

The second aspect is that certain activities for di�erent product life cycle
phases can be executed simultaneously. For example, part of process planning
for manufacturing and assembly can already be executed when the detailed de-
sign has not yet been completely �nished. Such simultaneous engineering can
further reduce product lead times.

Both aspects require a product model containing information for all product life
cycle phases. Solid modelling only deals with information about the geometry
of a product. In a concurrent engineering environment this is a shortcoming,
because here also non-shape information, eg functional information, is involved.
This can, for example, be the function of some part of the product for the

user, or information about the way some part of the product is manufactured or
assembled [2]. Feature modelling does deal with such non-shape information in
addition to shape information; both are represented in features.

Features can be used in several product life cycle activities. In the design of
products, features can be used to model products with entities that are on a
higher level, and closer to the way of thinking of a designer, than the entities
used in geometric modelling; an example is a stepped hole, consisting of two
concentric holes. In process planning for manufacturing, features can identify
areas in a product that can be manufactured in one machining operation with
one type of equipment; an example is a slot that can be milled with a particular
milling machine. In assembly process planning, features can identify connections
between parts.

Each activity has its own view of a product, ie its own way of looking at
it. Each view contains the features relevant to the speci�c activity. An example
of two views of a product is given in Figure 1. In the design view, the object
is represented by a base block with a protrusion and a blind hole (a). In the
manufacturing view, it is represented by a larger stock with a step and a blind
hole (b).

blind hole

base block

protrusion

(a)

step

stock blind hole

(b)

Fig. 1. Design and manufacturing view.

In this paper, an outline is given of such a feature modelling approach, with in
each view a feature model speci�c for the corresponding activity. In Section 2,
the product model is described. In Section 3, feature validation, the basis for
maintaining the meaning of features, is discussed. In Section 4, a method for
feature conversion from one view to other views is presented. In Section 5, a
feature model speci�c for the assembly planning view is described. In Section 6,
conclusions and future developments are discussed.

2 PRODUCT MODEL

The basic entity in our product model for concurrent engineering is a feature,
de�ned as the representation of shape aspects of a physical product that are
mappable to a generic shape and are functionally signi�cant. A feature is char-
acterized by a number of parameters, such as shape parameters. A parameterized
description of a feature is called the generic de�nition of the feature. A generic
feature can be instantiated multiple times by specifying values for its parameters.
The topologic entities of a feature, such as vertices, edges, faces and volume, are
called feature elements.

A feature has a certain meaning. An example is that a cylindrical blind hole
has a circular top face, a cylindrical side face, and a circular bottom face, and,
in addition, that the �rst face is not on the boundary of the modelled object,
whereas the two other faces are.

In many of the current systems that are called feature modelling systems,
very little support is given to maintain the meaning, or validity, of features
when a model is edited. If, for example, a slot feature is inserted into a model
with a cylindrical blind hole feature in such a way that the bottom face of the
hole is no longer on the boundary of the object, then the feature is no longer a
cylindrical blind hole, but has become a cylindrical through hole instead, and its
functional meaning has thus changed (see Figure 2). Modelling systems that fail
to notify this, are in essence only geometric modelling systems, but no feature
modelling systems, because they do not maintain the meaning of features. In our
feature models, each feature does have a well-de�ned meaning, and this meaning
is maintained.

Fig. 2. Invalid blind hole.

The meaning of a generic feature is de�ned by its feature validation con-
straints (see Section 3). These include geometric relations within the feature,
relations with other features, and validity conditions for feature elements. After
feature instantiation, it is possible to specify additional relations between fea-
ture elements, possibly of di�erent features, ie model validation constraints. A

collection of feature instances and their relations is called a feature model.

Concurrent engineering requires multiple views of one product to be supported
simultaneously, each view containing features relevant to its life cycle activity.
Many of the activities in a concurrent engineering system will result in modi�ca-
tions of the product model. For example, manufacturability analysis may show
that dimensions of some part need to be modi�ed. Modi�cations should prefer-
ably be made in the view in which the need for them arises, and all modi�cations
made in any view should be re
ected in all other views. This requires feature
conversion from features in one view to features in other views (see Section 4).
Such feature conversion involves management of the product's shape, which is
represented by a di�erent feature model in each view, and management of the
constraints, which specify validity conditions of the features.

We are currently working on a prototype implementation of a system, called
Spiff, to test our approach to feature modelling for concurrent engineering. In
Spiff, a product model contains the di�erent views and their feature models,
see Figure 3. The feature models of the di�erent views are linked by the product
geometry.

view I view II

feature model

product
geometry

feature model

Fig. 3. The product model.

The representation of features is handled at two di�erent levels: speci�cation
and maintenance. This separation provides a clean way of feature speci�cation.

At the speci�cation level, features are speci�ed with all their properties, such
as view-speci�c parameters and attributes and constraints. Speci�cations are
made in an object-oriented speci�cation language, via a graphical user interface,
see Figure 4.

At the maintenance level, feature validity is maintained. A Constraint Man-
ager and a Feature Geometry Manager store validation constraints and feature
shapes, respectively, in their data structures, and they maintain these when the
product model is edited, see Figure 5.

The Constraint Manager stores all constraint instances in a constraint graph,
in which two types of nodes represent constraints and variables, and edges con-

Fig. 4. The Spiff graphical user interface.

nect constraints to associated variables. The variables are feature elements and
feature parameters (see Section 3).

The Feature Geometry Manager maintains a cellular model, which represents
the product geometry. Cells in the cellular model are volumetric; they can have
overlapping boundaries, but they cannot have overlapping volumes. They re
ect
all feature intersections, and therefore can have an arbitrary shape.

Features as described until now, which are often called form features, occur in
all views on the product model, although di�erent types may occur in di�er-
ent views. In addition, also other, view-speci�c features may be useful in each
view. These features add activity-speci�c functional information using the form
features. This has been implemented for the assembly planning view, in which,
for example, connection features represent connection information between form
features (see Section 5). In other views, other features may be useful besides the
form features. For example, in the design view these might be conceptual features
at a higher abstraction level than the form features. Such a model, with form
features and other, view-speci�c features, is called an enhanced feature model.

A product model with an enhanced feature model for each life cycle activity,
is ideal for a concurrent engineering system, because it contains all information

Looks Interpreter

Feature Manager

Feature Geometry ManagerConstraint Manager

specification level

maintenance level

Solvers
Constraint Graph Cellular Model

Feature Specs

Fig. 5. Feature speci�cation and maintenance.

required in the whole product life cycle. In the sequel, several aspects of our
feature modelling approach that supports such a product model are discussed.

3 FEATURE VALIDATION

The basis to maintain the meaning of features is feature validation. Feature vali-
dation is performed by maintaining validation constraints. These are part of the
de�nition of features and specify, for example, the kind of properties mentioned
in Section 2 for the cylindrical blind hole. Both at the creation of a feature and
at subsequent modelling steps, these constraints are checked to see whether the
feature is still valid.

The following constraint types are used to specify feature and model validity.
Shape, attach and semantic constraints are used only for specifying feature va-
lidity; the other constraints can be used both for specifying feature validity and
for specifying model validity.

Shape constraints correspond to the type of feature shape, eg a block for
a slot. They are used to control the relations between feature parameters and
feature geometry.

Attach constraints specify the attachment of a feature to a feature model. A
hierarchical relation is speci�ed between two feature elements, eg faces, including
the remaining degrees of freedom of the attached elements (see Figure 1a in
which the top face of the cylinder is attached to the top face of the base block).
These attachments are used instead of the parent-child relations between features
used in many other systems. The advantage is that a feature instance does not
necessarily have only one parent feature; it can be attached to feature elements
of several features.

Fig. 6. Constraint graph.

Semantic constraints specify topologic properties of feature elements. For
a vertex, edge or face, a semantic constraint speci�es the extent to which the
element must lie on the product boundary. For a volume, a semantic constraint
speci�es the extent to which the volume is allowed to intersect other feature
volumes. The cylindrical blind hole of Figure 1a is represented by a cylinder that
is subtracted. Its bottom face must be completely on the product boundary. The
side face, on the other hand, must be at least partly on the boundary, and the
top face may not be on the boundary. This may be the semantic speci�cation
of a blind hole in a design view. If a blind hole is part of a pen-hole connection
feature in an assembly view (see Section 5), a semantic constraint on its volume
may declare that no additive feature instantiated later may intersect the hole.

Geometric constraints specify geometric relations, such as parallelism and
distance, between feature elements. When used as a model validation constraint,
geometric constraints can dimension a feature model. An example is a geometric
constraint specifying a distance between two parallel slots.

Dimension constraints specify an interval for the value of a feature parameter.
An example of a dimension constraint in a manufacturing view, is a constraint
on the width of a slot, declaring it to be within some speci�ed range, because
there is no milling equipment available to mill slots with smaller or larger widths.

Algebraic constraints specify equations containing feature parameters. An ex-
ample is an expression for the length of the protrusion in Figure 1a to be equal
to half the length of its base block.

Figure 6 shows part of the constraint graph for the feature model shown in
Figure 1a. Light grey icons depict constraints, dark grey icons depict constraint

variables, which are either feature elements or feature parameters. The features
each have a shape constraint that connects the various feature elements.

After changing a feature model, all constraints in the graph are maintained
by the Constraint Manager (see Figure 5), which handles the various constraint
types by calling dedicated solvers.

For example, when a feature is instantiated, the Constraint Manager �rst
determines the unspeci�ed feature parameters by solving its attach, shape and
geometric constraints. The dimensions of the feature are then checked against
the dimension and algebraic feature validation constraints. After this, the fea-
ture shape is inserted into the geometry of the product model, ie the cellular
model. Finally, the semantic feature validation constraints of the feature and
its intersecting features are checked. If one of the constraints is not valid, the
feature is not added to the model.

Dimension, algebraic and semantic constraints are currently only checked. Di-
mension constraints can be checked by testing whether the feature parameter
involved has a value within the speci�ed range. For algebraic constraints, a dedi-
cated equation solver will be used. After the model has been edited, the semantic
constraints are checked of all features that have been repositioned or redimen-
sioned, and of the features that intersect any of these before or after the change.

To maintain the feature's attach, shape and geometric validation constraints,
these constraints are mapped onto a constraint graph containing primitive ge-
ometric constraints that restrict translational and rotational degrees of free-
dom [4]. Examples of primitive constraints are a parallel-z-axes constraint and
a coincident-points constraint. The primitive-constraint graph is solved using
degrees of freedom analysis [9].
With the feature validation approach outlined, the validity of features can be
maintained after each modelling operation. If it is detected that a feature is no
longer valid, the modelling operation simply can be forbidden, and the user can
then take an appropriate action, for example, change the feature parameters, or
even change the feature type. For an ideal feature modelling system, however,
this method is too rigid. The least that is desirable is that the user gets a good
explanation on what has caused a feature to be no longer valid. A further im-
provement would be that he gets hints on how to avoid or overcome the problem.
Ideally, the system automatically adapts the model to get a valid model again
in cases where this is possible and desirable, although this should probably not
be done without consulting the user. In the example in Figure 2, in which the
bottom of the cylindrical blind hole was removed by the insertion of a slot into
the model, the blind hole might be automatically converted into a through hole,
if the user permits this.

Most validity violations result from modelling operations that cause feature
interactions. Feature interactions may have a very wide range of e�ects on a
feature model. Although these may often be intended, in many situations they
may a�ect the semantics of a feature, ranging from slight changes in parameter

values to the complete suppression of its contribution to the model shape. To
get more insight in this, a taxonomy for feature interactions has been developed
that takes into account relevant design and technological criteria [1].

An immediate goal of our research on feature interaction management is
the detection of each interaction class, as a result of monitoring each modelling
operation. This is based on the analysis of the interaction extent and feature
natures, the evaluation of semantic constraints, and a variety of topologic and
geometric queries to the cellular model.

Our next research goals in this area include providing the user of Spiff with
a choice of reactions and suggestions, whenever one of the above interaction
situations is detected (eg readjust some feature parameters, suggest a change in
attachments, or perform a change in feature type).

4 FEATURE CONVERSION

In this section, our method to convert a feature model from one view to feature
models in other views is presented.

Conversions proposed until now are one-way: a designer has to input a pri-
mary view, and conversion modules are available to generate other feature mod-
els for secondary views, in particular for a manufacturing process planning view
[11, 3]. If a modi�cation in the product model is required on the basis of the
outcome of an activity, this modi�cation has to be entered in the primary view,
after which new secondary views can be generated when needed.

To support concurrent engineering with multiple feature views, the solution
with a primary view and a number of secondary views is far from ideal. If an
engineer �nds in some secondary view that, for example, a dimension of the
designed product has to be adjusted, he has to switch from his secondary view
to the primary view to make the adjustment. In this view, however, the fea-
ture model is di�erent from the one in his own view, and it may be di�cult to
determine the right adjustments of the feature parameters. We have therefore
developed an approach that supports all feature views simultaneously, and per-
forms multiple-way feature conversion between these views [7].

When supporting multiple views simultaneously, two types of operations can be
identi�ed that correspond to two types of feature conversion. Firstly, it is pos-
sible to open a view. Feature conversion to the opened view is then performed,
making all views consistent. Views are consistent if they represent the same prod-
uct geometry. In the view that is opened, a new feature model is automatically
built, on the basis of the product model as already speci�ed in all other views.
Secondly, in line with the design by features approach, it is possible to edit a
view. Either parameters can be changed, or feature and constraint instances can
be created or deleted. These changes are re
ected in the other views by propa-
gating the changes from the edited view to the other views.

After the product model has initially been speci�ed in one view, another view
can be opened. A generic method for opening a view has been developed that
uses the cellular model and view-speci�c information [8]. A new feature model is
automatically built by instantiating features one by one, until the opened view
is consistent with the other views.

Given a set of generic features of a view and the cellular model, many in-
terpretations in terms of features exist. One approach is to generate all possible
interpretations and choose one, but, since there can be very many interpretations,
this is not a satisfactory solution. Therefore, we try to �nd a good interpretation
for each view directly.

For �nding a good interpretation, we assign to each view a strategy for iden-
tifying feature instances in the cellular model. Such a strategy uses the view's
generic features, and it re
ects the view's function. Of the latter, important
aspects are the structure of the feature model, and the order in which the fea-
tures can occur. For example, the structure of a design feature model may be
mainly constructive, but with some subtractive features. A manufacturing fea-
ture model, however, may be completely destructive. In both cases the feature
order is important.

To open a view, its strategy provides a sequence of feature classes, and it is
tried to identify instances of these classes in that order. This is repeated until
the view is consistent. To identify an instance of a feature class, an instance of
its shape must be identi�ed. We propose to choose the largest feature shape that
satis�es the feature's validation constraints. To identify a feature shape, �rst its
attach faces are identi�ed, and then these are used to perform a directed search
to identify the other shape faces. Attach faces are sought on the boundary of
the view's not yet consistent feature model. The other shape faces are sought
on the product boundary. Both face types are matched with the generic shape
faces using topologic and geometric relations. With the faces found, a shape is
constructed. After this, values for the feature's parameters are derived. If all its
validation constraints are satis�ed, a valid feature instance has been created.
An important advantage of this approach is that it can deal with any feature
intersection.

We illustrate the opening of a view with an example. Assume that the product
in Figure 7a has been created in a design view, by starting with a base block, and
adding a protrusion and a blind hole (this is the same view as in Figure 1a). Now
a feature model in the manufacturing view is built. First a stock is identi�ed by
adding the bounding box of the designed object, see Figure 7b.

Assume that the strategy prescribes to identify a step, which is represented
by a block shape. The four faces indicated in the manufacturing model in Figure
7c are selected as attach faces. The other two shape faces are sought in the
model of Figure 7a. This results in the creation of the step's block shape, which
is subtracted in Figure 7d.

Next the strategy prescribes to identify a blind hole. The circular face indi-
cated in the manufacturing model in Figure 7e is selected as attach face. The
side and bottom faces are sought in the model of Figure 7a. This results in the

(a) (b) (c)

(d) (e) (f)

Fig. 7. Open view example.

creation of the blind hole's cylinder shape, which is subtracted in Figure 7f (this
is now the same view as in Figure 1b).

Now, since the manufacturing view represents the same geometry as the de-
sign view, and thus the manufacturing view is consistent with the design view,
the opening of the manufacturing view has been completed.

Editing a view requires maintaining the product model. This involves, among
other things, simultaneously maintaining the validation constraints in all views.

After a view has been opened, and before a parameter can be changed, links
with the other views implicitly stored in the cellular model are made explicit
in geometric constraints between the views. Constraints for this are called link
constraints, and they couple degrees of freedom of overlapping boundary feature
elements of di�erent views. These inter-view constraints are established auto-
matically, and are considered in the constraint maintenance.

To deal with con
icting constraints, each view is assigned a priority that is
used to decide whether the edit operation will be issued and propagated or not.

If the edit view con
icts with higher priority views, the change is issued only
if the higher priority views can be successfully reopened. Reopening a view is
e�ciently done with an incremental version of the open view function. If the edit
view con
icts with lower priority views, the change is issued, and it is tried to
reopen the lower priority views.

5 AN ASSEMBLY FEATURE MODEL

As described in Section 2, for a speci�c view the form feature model can be
enhanced with other, view-speci�c features. In this section, an enhanced feature
model for the assembly planning view is discussed, and it is shown how this
model can pro�tably be used in several assembly planning modules.

Most products need to be assembled from subassemblies and parts. These
components are related to each other, often with speci�c connections. Char-
acteristics of these connections are stored in so-called assembly features. We
distinguish two types: connection and handling features, storing information on
connections between components, respectively information speci�c for handling
a component.

A handling feature stores for a component the areas where it can, or where it
cannot, be grasped, the way it is transported to the assembly environment, the
orientation on and the geometry in contact with the �xture, and the grippers
that can be used to assemble the component.

With connection features, relations between components are modelled with
relations between form features on the components. The information stored in
these features is, among other things, used to verify whether the contacts can
be made, and whether tolerances can be managed.

The idea of connection features is that characteristics of connections can be
incorporated in these features, eg insertion point, insertion path, �nal position,
tolerances, contact faces, internal freedom of motion, attachment agent, and ge-
ometric re�nements such as chamfers and rounds to ease assembly operations.
The �nal position, or goal position, is the position and orientation of the assem-
bled component relative to the already assembled components, called the partial
assembly, after the assembly operation has been completed. The insertion point
is the position and orientation relative to the �nal position where there is not yet
contact between the assembled component and the partial assembly, and where
the insertion operation is started. The insertion path is the trajectory from the
insertion point to the �nal position. Tolerances and contact faces between assem-
bled component and partial assembly give clues for calculation of the internal
freedom of motion, ie the set of motions that can separate the component and the
partial assembly. An attachment agent is a component that is needed to enforce
the speci�c connection, eg a bolt and a nut to fasten two plates are attachment
agents in the connection of the plates.

The assembly feature information can be added to a model either by a de-
signer or by an assembly planning expert. In �gure 8, an example is given of an
assembly model, consisting of three components (with grey border) and three

(a) product

bolt

corner-attach

base block block

pen-hole

product
pen-hole

(b) assembly feature model

Fig. 8. An assembly feature model for a product.

connection features.

It is now illustrated how this assembly feature information can be used in plan-
ning modules.

Connection features can be very useful for stability analysis, in which it has
to be determined which components can move relative to each other. Each con-
nection feature contains the internal freedom of motion between the mutually
connected components. Combining the internal freedom of motions of all connec-
tion features of a component, gives information on the resulting internal freedom
of motion for that component relative to other components. Because the internal
freedom of motion is known for every connection feature, it is no longer neces-
sary to calculate it from the geometry of the components, which makes stability
analysis simpler and faster.

In motion planning, a path is determined to move a component from its
feed position to its �nal position on the partial assembly. Gross motion and �ne
motion planning are distinguished.

During gross motion planning, a collision-free path for the assembled com-
ponent from its feed position to the insertion point is searched. Because connec-
tion information is not used here, the assembly feature concept can hardly be
exploited. Only the position and orientation where the gross motion must stop,
and change to �ne motion, can be gathered from the connection feature.

Fine motions, on the other hand, can hardly be planned without assembly
features. In �ne motion planning, the �nal stage of assembling a component onto
a partial assembly is planned. Component and partial assembly are very close
to each other, or even make contact. All kinds of subtle movements, including
compliant movements, must be executed to make the connection. For example,
for assembling a round pen-hole connection, other �ne motion strategies are

needed than for assembling a square pen-hole connection. Associating prede�ned
�ne-motion-strategy information with a connection feature, can result in better
strategies and in a reduction of planning time.

Grasp planning is done to determine the areas on components where grippers
can grasp the component. Here both handling features and connection features
can be used. Handling features contain gripper information that is used to com-
pute gripper-speci�c areas of a component where it either can or cannot be
grasped. These areas are independent of the actual position and orientation of
the component. Connection features can give additional information on areas
where not to grasp, because these features specify areas that are involved in a
connection. These areas are dependent on the components already assembled in
the partial assembly. By combining information derived from handling features
and connection features, areas can be determined where the component can be
grasped. Handling features can give additional information on how to grasp the
component, eg which gripper can be used and which forces the gripper should
apply on the component [5].

The assembly features are also very useful for �nding possible assembly se-
quences [6]. In assembly sequence planning, all information found in the previ-
ously presented modules is combined to determine possible assembly sequences.
Finding the ideal assembly sequence, in terms of assembly time and used re-
sources, out of all possible sequences can be very time consuming, and the as-
sembly information stored in connection features can be used as heuristics to
speed up this process. Some connection features already contain information
about possible assembly sequences. A connection feature with agents for con-
necting two plates with a bolt and nut, for example, 'knows' that �rst the plates
and thereafter the bolt and nut must be assembled, instead of �rst the bolt and
nut, leaving no room for assembling the two plates.

From the above, it is clear that in many assembly planning modules it is advan-
tageous to use the information stored in the assembly features. The presented
enhanced feature model is thus useful for the assembly planning view.

6 CONCLUSIONS AND FUTURE DEVELOPMENTS

Several new concepts and methods have been presented to apply feature mod-
elling in concurrent engineering. Each product life cycle activity can have its
own view on the product model, each view consisting of a feature model with
features relevant for that view.

Feature validation is an aspect of feature modelling that erroneously is ne-
glected in most current feature modelling systems. It becomes even more impor-
tant in a concurrent engineering environment, because in di�erent views, features
can have very speci�c meanings. Feature interaction management is a good basis
for assisting the user in creating valid models.

Feature conversion as described here, for obtaining a feature model for any
view, is a very promising approach to multiple-way feature conversion. Such

conversion is a prerequisite in a concurrent engineering environment, because all
feature views have to be simultaneously supported in such an environment.

An enhanced feature model for a view contains, besides the form features
speci�c for that view, also other features speci�c for that view. This concept has
been demonstrated for the assembly planning view, in which assembly features
are added to the form features. It has been shown that assembly features can be
used pro�tably in assembly planning. For other views, other enhanced feature
models are foreseen.

The work described will continue. The main goal is the development of a
multiple-view enhanced feature modelling system, with good facilities for fea-
ture validation, interaction management and conversion. Such a system can ad-
equately support the kind of product model that is ideal for concurrent engi-
neering.

ACKNOWLEDGMENTS

Rafael Bidarra's work is supported by the Portuguese Praxis XXI Program of
JNICT.
Klaas Jan de Kraker's work is supported by the Netherlands Computer Science
Research Foundation (sion), with �nancial support from the Netherlands Orga-
nization for Scienti�c Research (nwo).
We thank Bart Vergouwe for implementing the Spiff graphical user interface,
and Kees Seebregts for his support in the software development.

References

1. R Bidarra and W F Bronsvoort. Towards classi�cation and automatic detection of
feature interactions. In D Roller, editor, Proceedings 29th International Symposium

on Automotive Technology & Automation, pages 99{108, 1996.

2. W F Bronsvoort and F W Jansen. Feature modelling and conversion - Key con-
cepts to concurrent engineering. Computers in Industry, 21(1):61{86, 1993.

3. P Dave and H Sakurai. Maximal volume decomposition and its application to
feature recognition. In Proceedings of the 15th ASME International Computers in

Engineering Conference, pages 553{568, 1995.

4. M Dohmen, K J de Kraker, and W F Bronsvoort. Feature validation in a multiple-
view modeling system. In J M McCarthy, editor, CD-ROM Proceedings of the

ASME 1996 Design Engineering Technical Conferences and Computers in Engi-

neering Conference, 1996.

5. W van Holland and W F Bronsvoort. Extracting grip areas from feature infor-
mation. In J M McCarthy, editor, CD-ROM Proceedings of the ASME 1996 De-

sign Engineering Technical Conferences and Computers in Engineering Conference,
1996.

6. W van Holland and W F Bronsvoort. Assembly features and sequence planning.
In M Pratt, R D Sriram, and M J Wozny, editors, Product Modelling for Computer

Integrated Design and Manufacture. Chapman & Hall, 1997. To be published.

7. K J de Kraker, M Dohmen, and W F Bronsvoort. Multiple-way feature conversion
to support concurrent engineering. In C Ho�mann and J Rossignac, editors, Solid
Modeling '95, Third Symposium on Solid Modeling and Applications, pages 105{
114. ACM Press, May 1995.

8. K J de Kraker, M Dohmen, and W F Bronsvoort. Multiple-way feature conversion
- opening a view. In M Pratt, R D Sriram, and M J Wozny, editors, Product
Modelling for Computer Integrated Design and Manufacture. Chapman & Hall,
1997. To be published.

9. G A Kramer. Solving geometric constraint systems: a case study in kinematics.
The MIT Press, Cambridge, Mass., USA, 1992.

10. H R Parsaei and W G Sullivan. Concurrent Engineering; Contemporary Issues

and Modern Design Tools. Chapman & Hall, London, 1993.
11. J H Vandenbrande and A A G Requicha. Geometric computation for the recog-

nition of spatially interacting machining features. In J J Shah, M M�antyl�a, and
D S Nau, editors, Advances in feature based manufacturing, pages 83{106. Elsevier
Science B.V., Amsterdam, 1994.

This article was processed using the LATEX macro package with LLNCS style

