
1 Copyright © 1997 by ASME

Proceedings of DETC�97

1997 ASME Design Engineering Technical Conferences

September 14-17, 1997, Sacramento, California

DETC97/CIE-4275

AUTOMATIC DETECTION OF INTERACTIONS IN FEATURE MODELS

Rafael Bidarra, Maurice Dohmen and Willem F. Bronsvoort

Faculty of Technical Mathematics and Informatics
Delft University of Technology

Zuidplantsoen 4, NL-2628 BZ Delft, The Netherlands
Email: (Bidarra/Dohmen/Bronsvoort)@cs.tudelft.nl

ABSTRACT

Current feature-based modeling systems fail to adequately maintain
feature semantics. This is partly due to inappropriate specification of
validity conditions in feature classes, but mainly due to a lack of
effective validity maintenance mechanisms throughout the modeling
process. A critical aspect in this is feature interaction management.
This paper presents a new approach to the detection of feature
interactions, which uses semantic and interaction constraints in
feature class specification. Validity maintenance is automatically
performed after each modeling operation by checking these
constraints, thus being able to detect a variety of interaction types.
Such interactions are then analyzed, and their causes identified and
reported to the user.

1 INTRODUCTION

Feature modeling systems offer the possibility to build a
product model with features. These are representations of
shape aspects of a physical product that are mappable to a
generic shape and are functionally significant. Stated
differently, each feature has a well-defined meaning, which
should be represented and preserved in a product model.

Several proposals have been made to approach the
problems of specification and maintenance of feature validity.
These were surveyed in (Dohmen et al. 96), and it was
concluded that a declarative approach, where validity
specification is done separately from validity maintenance,
provides the best solution. Currently, no feature modeling
system provides a really powerful and self-contained scheme
for validity specification of feature classes. Most approaches
are based on a variety of constraint types, each of which gives
a specific contribution in the description of the behavior
desired for instances of each class in the feature library.
Whenever a feature is instantiated, instances of its validation
constraints are automatically created. Such constraints have to

be solved and maintained, both at a feature’s creation and in
subsequent modeling steps.

Without effective validity maintenance, or in case the
validation constraints specified are insufficient, the modeler
will fail in preserving feature semantics and, thus, in capturing
designer intent. This is the case in many commercial “feature-
based” systems which, for example, fail to notify the
transmutation of a blind hole into a through hole, as depicted
in Figure 1.

Figure 1 - Blind hole transmutation due to slot

displacement

Current research prototypes that do perform validity
maintenance, see for example (de Kraker et al. 95), (Mandorli
et al. 95) and (Vieira 95), simply reject any user modeling
operation that yields inconsistencies in the feature model. The
user then has to take some alternative action, e.g. changing
parameters of a feature, or even taking a feature of a different
type.

However, this scheme seems too rigid, as it may often be
hard to trace why invalidity arose or to find a way around it.
The least that is desirable is that the user gets a good
explanation on what has caused the invalidation of a feature. A
further improvement would be that he gets hints on how to
avoid or overcome the problem. Ideally, the system would
automatically adapt the model to get a valid model again in
cases this is possible and desirable, although this should

2 Copyright © 1997 by ASME

probably not be done without consulting the user. In the previ-
ous example of Figure 1, the blind hole might be automatically
converted into a through hole, if the user permits this.

Most validity violations are caused by feature interactions,
which arise from modeling operations such as the creation of a
new feature or the modification of an existing feature. It is
therefore important to manage feature interaction phenomena,
so that all relevant interaction situations can be detected,
reported and handled in an appropriate way (Regli and Pratt
96).

In short, a global solution to the validation problems pointed
out so far should include:

a) a declarative scheme for flexible specification of feature
classes, allowing a fine tuning of the behavior desired
for their instances;

b) a separate validity maintenance mechanism;
c) monitoring each modeler operation issued by the user in

order to detect feature interactions;
d) reporting to the user the causes of any invalidity

situation, together with a detailed analysis of its
consequences;

e) providing the user with a reasonable choice of reaction
mechanisms to overcome invalidity situations.

Items a) and b) have already been dealt with in (Dohmen et al.
96). This previous work will be summarized and somewhat
extended here (Section 2). In this paper we will focus on item
c), the feature interaction detection mechanism (Sections 3
and 4). This is regarded as an indispensable step in raising the
level of assistance (required in items d) and e)) of a feature-
based modeling system. Current implementation of these ideas
within the SPIFF

1 modeling system, a prototype multiple-view
feature-based modeler developed at Delft University of
Technology, is also described. The operation of interaction
detection algorithms is also illustrated with an example model
(Section 5). Finally, some conclusions are drawn on the
present approach, pointing out some further developments in
this research (Section 6).

2 SPECIFICATION AND MAINTENANCE OF FEATURE

VALIDITY

An effective proposal for specification and maintenance of
feature validity in feature models has been presented in
(Dohmen et al. 96), and implemented in the prototype system
SPIFF. This system has a mechanism for feature validity
maintenance based on constraint solving. Several types of
validation constraints are available; here only a brief
description of each one is given:
· semantic constraints specify how a feature instance is

allowed to topologically deviate from its canonical
behavior, by stating the extent to which its feature

1 Named after Spaceman Spiff, interplanetary explorer extraordinaire.

elements (e.g. faces) should belong to the model
boundary;

· attach constraints specify how a feature instance is
attached to the model, by coupling some of its feature
elements (i.e. faces or edges) to elements of other features
already present in the model;

· geometric constraints specify geometric relations, such as
parallelism and distance, between feature elements;

· dimension constraints specify an interval for the value of
feature parameters;

· algebraic constraints specify an expression for feature
parameters.

Such constraints are created in two ways. First, they may be
embedded as attributes of a feature class - the generic feature
definition - and are, thus, instantiated together with each new
feature instance. Second, they may be explicitly added by the
user, to further constrain or relate specific feature instances in
the model. In either case, this is called specification of validity
conditions (either of individual features or of the feature model
as a whole). Among the constraint types presented above,
dimension and semantic constraints are always established on
a single feature instance (intra-feature constraints); attach
constraints, on the other hand, always couple feature elements
of two different features (inter-feature constraints); geometric
and algebraic constraints may be established between feature
elements or parameters either of the same feature or of
different features (intra- or inter-feature constraints). Inter-
feature constraints may be regarded as defining a dependency
relation among feature instances of the model. Such a relation
reflects which features are directly dependent on (the elements
or parameter values of) any given feature.

The basic idea of our approach is that after a modeling
operation has been performed, the model is required to
conform to all existing constraints. The operation is
unsuccessful, and thus rejected, if any of the constraints is
violated. This is called validity maintenance.

Several advantages can be pointed out for this approach:
· the use of various constraint types for validity

specification in generic feature definitions permits a more
complete definition of all semantic aspects of each feature
class;

· user-added constraints can further assist in capturing
designer intent, still applying uniform constraint
management;

· once specified, validity is always maintained throughout
model editing, thus ensuring that all its feature instances
are kept valid;

· separated validity maintenance, performed during
incremental evolution of the model, allows for the
application of various techniques, including an
explanation mechanism for inconsistencies encountered
in this process.

3 Copyright © 1997 by ASME

This approach has now been extended in three directions.
First, interactions among features, caused during incremental
editing of the model, are also taken into account. In particular,
a variety of interaction classes that may affect feature
semantics have been identified (Bidarra and Bronsvoort 96). A
summary of these interaction types is presented in Table 1.

Second, a new type of constraints, interaction constraints, is
now used in feature classes to specify whether a given
interaction type should be disallowed for its instances. Third,
analysis of all invalid situations is performed in order to
provide the user of the system with proper explanations of their
causes.

Table 1 - Interaction classes handled in SPIFF

SPLITTING INTERACTION

insertion of the slot splits the through hole boundary into disconnected

components

DISCONNECTION INTERACTION

enlargement of the through hole diameter disconnects part of the block

from the remaining of the model

BOUNDARY CLEARANCE INTERACTION

enlargement of the protrusion width obstructs entrance face of the

through holes

VOLUME CLEARANCE INTERACTION

insertion of a protrusion intrudes into the subtractive volume of the

V-slot

CLOSURE INTERACTION

displacement of the protrusion causes the whole volume of two blind

holes to become a closed void inside the model

ABSORPTION INTERACTION

insertion of a slot suppresses contribution of the through hole to the model

shape

GEOMETRIC INTERACTION

insertion of a V-step changes the depth of the blind hole

TRANSMUTATION INTERACTION

insertion of a V-step turns the blind hole into a through hole

4 Copyright © 1997 by ASME

Validity maintenance is performed in SPIFF by means of a
Constraint Manager, a Feature Geometry Manager and an
Interaction Manager, under the control of a Feature Manager,
according to the architecture depicted in Figure 2.

The Feature Manager receives commands from the user, issued
via a graphical user interface, and sends appropriate requests
to the respective Managers, after which the result of the
operation is returned to the user.

The Constraint Manager maintains all constraints in a
constraint graph, and solves them by calling dedicated solvers.
The constraint graph is mapped onto two primitive constraint
graphs, one for primitive algebraic constraints and another for
primitive geometric constraints. The primitive algebraic
constraint graph is solved using the SkyBlue approach
(Sannella 92), the primitive geometric constraint is solved
using the Degrees of Freedom analysis approach (Kramer 92).
After a primitive graph has been solved, the constraint graph
maintained by the Constraint Manager is updated. In this way,
constraint solving is done efficiently by dedicated solvers,
while the Constraint Manager takes care of the
interdependence of the primitive constraint graphs.

The Feature Geometry Manager maintains the geometric
representation of the feature model in a cellular model. It is
responsible for performing those operations, issued by the
Feature Manager, that modify the cellular model, for instance,
adding a new feature to the model and removing or modifying
an existing feature (de Kraker et al. 97a). Each feature is
associated to one or more instances of shape classes. Each
shape instance accounts for a bounded region of space - the
shape extent. A through hole, for example, is associated to a
cylinder shape. The cellular model represents a part as a
connected set of volumetric quasi-disjoint cells, in such a way
that each cell either lies entirely inside a shape extent or
entirely outside it. Feature shapes are decomposed into cells;
overlapping feature shapes share one or more cells. The
complete boundary of a feature is decomposed into shape
elements, which are also explicitly represented in terms of cell
faces and edges (or simply cell elements). For the through hole
example above its boundary is decomposed into the cylinder
top, side and bottom faces, as well as the top and bottom loop

edges. Each cell element stores in an owner list which shape
elements it belong to; analogously, each cell stores in an owner
list which shape(s) it belongs to. In this way, the geometric
representation of feature shapes and their elements can be
selectively accessed at any time, allowing for the analysis of
actual feature semantics, as described in (Bidarra et al. 97).

The Interaction Manager performs the last stage of the
validation process, after each modeling operation: determining
whether any feature interaction occurs, and taking appropriate
action. For this purpose, the other two Managers are queried,
according to the analysis required by the interaction detection
mechanism described in the next section.

3 GLOBAL INTERACTION DETECTION MECHANISM

The global procedure of the Interaction Manager may, for each
of the main modeling operations - insertion, modification and
removal of a feature -, be subdivided into three main phases:

a) determination of the interaction scope of each
operation;

b) detection of specific feature interactions arising from
the operation;

c) individual analysis of each interaction, which includes
reporting its causes.

The feature interaction scope (FIS) of a modeling operation on
a feature f is determined by identifying all feature instances in
the model that may potentially be affected by it. Two important
notions, with regard to a given feature f, are:
· the set of features that overlap with f, either

volumetrically or between their boundaries; these features
make up the overlapping set of f, denoted OS(f), and they
are identified by querying the Feature Geometry Manager,
which keeps track of all feature shapes and their
intersections in the cellular model;

· the set of features that depend on f; these features make
up the dependency set of f, denoted DS(f), and they are
identified by querying the Constraint Manager, which
recursively traces in the constraint graph the dependency
relations on f.

Depending on the modeling operation, the feature interaction
scope will consist of different combinations of overlapping and
dependency sets.

Feature interactions taking place on any feature of FIS are
detected by checking their interaction and semantic
constraints. Detection algorithms for each type of interaction
constraint are described in the next section.

Each constraint violation is recorded by the Interaction
Manager. Eventually, the set of constraint violations is
analyzed, in order to identify their causes, which are then
reported to the user. Such explanations typically include
references to the feature elements or parameters involved in
the invalidity situation and possibly conflicting constraints
(Noort 97).

Feature Manager

Constraint Manager Feature Geometry

Manager

Interaction Manager

Graphical User Interface

Cellu lar modelConstraint GraphSolvers

Figure 2 - Architecture of the SPIFF system

5 Copyright © 1997 by ASME

Insertion of a new feature

After instantiation of a new feature, together with its validation
constraints, the Constraint Manager invokes its dedicated
solvers. First, algebraic constraints are solved in order to
obtain values for unspecified parameters. Next, attach and
geometric constraints are solved, in order to obtain all shape
parameter values. Finally, the values obtained for parameters
are checked against the dimension constraints. After this, the
corresponding feature shape is instantiated and inserted into
the cellular model by the Feature Geometry Manager.

The Interaction Manager then determines the FIS of the
operation. At the insertion of a new feature f, there are no
dependencies of other features on f yet, i.e. DS(f)=Æ, and thus
FIS=OS(f). Finally, interaction detection is performed on f and
all features in FIS.

Modification of a feature

Modification of a feature involves changing any of its
positioning or dimension parameters. After all changes to the
feature have been specified by the user, the Constraint
Manager re-solves the modified constraint graph of the model,
and the Feature Geometry Manager updates the cellular model
with the modified shape (or shapes).

The FIS of a modification operation on a feature f is the
union of OS(f), DS(f) and the sets OS(fi) of each feature fi in
DS(f).

The Interaction Manager performs the detection phase on
feature f and on each feature in FIS. All interactions detected
are reported and classified into three categories: (i) interactions
on the modified feature f; (ii) interactions on its dependent
features, DS(f); and (iii) interactions on any overlapping
feature, either of f or of its dependent features. In this way,
occasional interactions caused indirectly by any dependent
feature are not only detected, but also properly reported. In the
example of Figure 3, displacement of the upper V-slot implies
the displacement of the attached slot, which in turn causes the
transmutation of the blind hole.

Figure 3 - Indirect interaction caused by a dependent

feature

Removal of a feature

Removal of a feature f from the model is, from the interaction
management viewpoint, similar to its modification. However,
here the Interaction Manager has to make sure that none of the

inter-feature constraints, relating features of DS(f) with f, is
kept “pointing” to the removed feature. For this purpose,
several alternative reactions may be devised, although most of
these should not be performed without requiring user
confirmation and/or input. Example reactions are, according to
the particular type of inter-feature constraint:
· attach constraints - features attached to f may have their

attachment moved to any other suitable feature of the
model; alternatively, the user may choose to remove them
also, together with f;

· geometric constraints - such features must be made
geometrically dependent on features that remain in the
model; alternatively, the constraint might be removed, in
cases their positioning does not become under-
constrained;

· algebraic constraints - the algebraic expression should be
changed so that it is made independent of any parameters
of f; alternatively, the constraint could be removed after
fixing the values of all feature parameters it involves.

In cases where DS(f) is empty, there is no further validation
required on the remaining features, after f and its constraints
have been removed from the model and the cellular model has
been updated. Otherwise, the Constraint Manager first re-
solves the modified constraint graph, after which the Feature
Geometry Manager updates the cellular model accordingly.
The Interaction Manager then checks interaction and semantic
constraints of all features in FIS, just as for the modification
operation.

4 DETECTION OF EACH INTERACTION CLASS

In this section, detection procedures are presented for the
interaction classes presented in Table 1. For each of them, it is
also pointed out how additional information is collected, in
order to provide the user with a detailed explanation.

Each of these algorithms is aimed at checking the
respective interaction constraint. For simplicity, the detection
algorithms shown here operate on features with only one
shape; however, their extension to features consisting of
several shapes is straightforward. Only the detection algorithm
for disconnection interactions operates on the whole model,
provided that such interactions may take place without actually
splitting any single shape, but rather disconnecting it from the
remaining model volume, see (Bidarra and Bronsvoort 96) for
an example.

The algorithms shown make use of the functionality
provided by the Constraint Manager and the Feature Geometry
Manager in order to query their data. Most of these methods
are described in detail in (Bidarra et al. 97); for completeness,
Table 2 gives a summary of those methods.

Splitting interaction

Splitting interactions can be described in terms of the nature of

6 Copyright © 1997 by ASME

feature boundaries. They occur to a feature shape whenever the
cellular decomposition of its boundary is such that the subset
of its additive cell faces is not connected.

Splitting interaction detection algorithm

boundary ¬ s.boundary(additive)
cf 1 ¬ boundary.first
for each cell face cf 2 in boundary

if not boundary.accessible(cf 1,cf 2) 2

return true
return false

additional data returned

· the split subsets of additive faces

Disconnection interaction

Disconnection interactions are analogous to splitting

2 The accessible(e1, e2) method of a set of entities returns TRUE iff:

a) for the two specified elements, e1 and e2, either e1=e2 or
e1.adjacent(e2) holds; or
b) there is a third element e3 in the set such that e1.adjacent(e3) and
set .accessible(e3, e2) ,

and FALSE otherwise.

interactions, but they are better described in terms of the
behavior of additive shape volumes. They occur to additive
features whenever the cellular decomposition of the model is
such that the subset of its additive cells is not connected.

Disconnection interaction detection algorithm

cells ¬ cm.cells(additive)
c1 ¬ cells.first
for each cell c 2 in cells

if not cells.accessible(c 1,c 2)
return true

return false

additional data returned

· the split subsets of additive cells of the model

Boundary clearance interaction

Some semantic constraints, in particular those of type
notOnBoundary(completely) , are intended, for exam-
ple, to guarantee clearance on toolpath entrance faces of sub-
tractive features. A clearance interaction occurs to a
subtractive feature whenever such a semantic constraint on one
of its shape elements is not satisfied.

Table 2 - Summary of methods used in the detection algorithms

CELLULAR MODEL, cm

A
A
A
A

cm.cells(nature) returns the list of cells with specified nature in the cellular model

SHAPE, s

A
A
A
A
A

s.nature returns the nature (additive or subtractive) specified for shape s
A

A
A
A
A
A

s.elements returns the list of shape elements of shape s
A

A
A
A
A
A

s.cells returns the list of all cells that lie in the shape extent of s
A

A
A
A
A
A

s.boundary(nature) returns the list of cell faces with specified nature that lie in the extent of shape elements of s
A

A
A
A
A
A
A
A

s.overlappingSet(nature) returns the list of shapes of specified nature that overlap with shape s (either volumetrically or
between their boundaries - cell faces and edges)

A

A
A
A
A
A

s.constraints(type) returns the list of constraints of specified type established on shape s

SHAPE ELEMENT, e

A
A
A
A

e.shape returns the shape to which the element e belongs
A
A

A
A
A
A

e.cellFaces returns the list of cell faces that lie in the extent of shape element e

CELL, c

A
A
A
A
A

c.ownerlist returns the list of shapes that own cell c
A

A
A
A
A
A

c.boundary returns the list of cell faces that bound the volume of cell c

CELL FACE, cf

A
A
A
A
A

cf.cell returns the cell bounded by cell face cf
A

A
A
A
A

cf.partner returns the partner cell face of cf that bounds an adjacent cell (if this exists)
A
A

A
A
A
A

cf.ownerlist returns the list of shape elements that own cell face cf
A

A
A
A
A
A

cf.nature returns additive if the cell face cf lies on the model boundary, and subtractive otherwise

OWNER LIST, l

A
A
A
A
A

l.last returns the last element of the owner list l
A

A
A
A
A
A

l.after(element1, element2) returns true if element1 occurs after element2 in the owner list l

7 Copyright © 1997 by ASME

Boundary clearance interaction detection algorithm

semanticConstraints ¬ s.constraints(semantic)
for each sc in semanticConstraints

if sc.type = nob(completely) and not sc.check
return true

return false

additional data returned

· the shape element with the unsatisfied semantic
constraint

· the shape(s) causing the constraint violation

Volume clearance interaction

A volume clearance interaction occurs to a subtractive feature
whenever a subset of its volume is later occupied by an
additive feature. The detection of this interaction relies on
checking the ownerlist of all cells in the subtractive feature
shape.

Volume clearance interaction detection algorithm

for each cell c in s.cells
list ¬ c.ownerlist
for each shape s i in list

if list.after(s i ,s) and s i .nature = additive
return true

return false

additional data returned

· the additive feature shape causing the interaction

Closure interaction

This interaction class may be characterized by the occurrence
of a (group of interacting) subtractive feature(s) whose
(compound) volume becomes a closed void inside the model.

In the case of single closure, there is only one feature
shape involved and, hence, a necessary and sufficient condition
is that its whole shape boundary is totally present on the model
boundary, i.e. it has no subtractive cell faces. In multiple
closure, however, such cell faces may occur on the involved
features’ boundaries, but only separating their overlapping
volumes. Therefore, the detection algorithm exits as soon as it
finds one cell face of these boundaries that is not separating
two subtractive cells.

Closure interaction detection algorithm

closedShapes ¬ s È s.overlappingSet(subtractive)
for each shape s i in closedShapes

for each cell face cf in s i .boundary(subtractive)
if not exists cf.partner

return false
else

closedShapes.add(cf.partner.ownerlist.last.shape)
return true

additional data returned

· the set of closed feature shapes

Absorption interaction

Absorption interactions are better described in volumetric
rather than in boundary terms. They occur to either an additive
or a subtractive feature, whenever it ceases to contribute to the
model shape. A sufficient and necessary condition is that all
cells of the absorbed feature shape are contained in, i.e. owned
by, one or more other interacting shapes. This information is
explicitly stored in the ownerlist of a cell, whose last element
stands for the shape that most recently occupied the cell
volume.

Absorption interaction detection algorithm

for each cell c in s.cells
if c.ownerlist.last = s

return false
return true

additional data returned

· the set of interacting shapes causing the absorption

Geometric interaction

Geometric interactions on a subtractive feature are described
by a combination of volumetric and boundary conditions on
shape elements. Informally, they can be described as the
removal of a “slice” of the feature shape adjacent to one of its
shape elements. The detection algorithm, thus, analyzes, for
each shape element, the boundary of all cells in its
neighborhood.

The “amount” of geometric interaction (i.e. the
computation of the actual parameter value shown), requires
additional geometric queries: determination (i) of the
parameter related with the shape element, (ii) of the respective
direction, and (iii) of the dimension of the remaining shape
volume in that direction.

Geometric interaction detection algorithm

for each shape element e in s.elements
geom_int ¬ true
for each cell face cf in e.cellFaces

for each cell face cf i in cf.cell.boundary
if cf i .nature = additive

geom_int ¬ false
exit

if not geom_int
exit

if geom_int
return true

return false

additional data returned

· the shape element(s) involved

· the actual parameter value(s)

8 Copyright © 1997 by ASME

Transmutation interaction

Transmutation interactions are analogous to geometric
interactions, in that they also act on a shape element. When a
shape element e has a semantic constraint, its semantic nature,
denoted e.semanticNature , is defined as:

additive , if it has a semantic constraint of type
onBoundary ;

subtractive , if it has a semantic constraint of type
notOnBoundary ; and

nil , otherwise.

With a transmutation, the nature of all cell faces of a shape
element is opposite to its semantic nature. Shape elements on
which there are no semantic constraints specified (meaning
that their presence/absence on the model boundary is irrelevant
for feature semantics) are, thus, not subject to this interaction
class. To determine the potential new class of the transmutated
feature, a dedicated module is used that performs incremental
identification of features in the cellular model, see (de Kraker
et al. 97b).

Transmutation interaction detection algorithm

for each shape element e in s.elements
n ¬ e.semanticNature
if n ¹ nil

transm_int ¬ true
for each cell face cf in e.cellFaces

if cf.nature = n
transm_int ¬ false
exit

if transm_int
return true

return false

additional data returned

· the shape element with the unsatisfied semantic
constraint

· the identified feature class of the transmutated feature

5 INTERACTION DETECTION EXAMPLES

In this section we illustrate with an example several classes of
interactions that are detected by the algorithms presented
above. We start up with the model in Figure 4, which consists

Figure 4 - Example feature model created in SPIFF

9 Copyright © 1997 by ASME

of a base block, a rectangular step, two blind slots, two through
holes and a blind hole.

By means of the graphical user interface of SPIFF the
above model can be edited, for instance by modifying one of its
features or adding a new one. Figure 5 shows a variety of
interaction situations which have been derived in this way. In
(a) the blind hole boundary has no subtractive cell faces, and is
thus closed inside the model; in (b) the through slot is inserted
such that its additive boundary becomes split into three
disconnected subsets; in (c) the same through slot is inserted
with an excessively large depth, causing the base block
disconnection; in (d) a decrease in the rectangular step depth

causes unclearance of the blind and through holes; in (e) the
two blind slots see their effective length reduced due to the step
insertion over their entrance faces; and in (f) one of the blind
slots overlaps with the other when displaced, resulting in the
geometry of a unique, larger blind slot.

It should be recalled that the actual detection of such
interactions depends on the explicit presence of the respective
interaction constraint in the affected feature instances.

6 CONCLUSIONS AND FUTURE WORK

Validity maintenance of feature models is not complete
without proper management of feature interactions. This poses

(b) splitting

(a) closure (c) disconnection

(d) boundary clearance

(e) geometric

(f) transmutation

Figure 5 - Some interaction situations caused by editing the model of Figure 4

10 Copyright © 1997 by ASME

strong requirements at various levels of a feature-based
modeling system, in particular at the:
· specification level of feature classes;
· geometric representation level of feature models;
· operational level of the modeler.

The approach described in this paper has the following
advantages. It:
· permits fine tuning of validity specification (both at the

generic feature definition level and at any modeling stage)
for all feature instances in the model;

· ensures feature validity after each modeling operation;
· detects and classifies each kind of interaction occurring in

the model.

Future research includes the generation of possible reaction
methods to interactions detected, and the development of
mechanisms for automatic recovery of model validity.

ACKNOWLEDGMENTS

Rafael Bidarra’s work is supported by the Praxis XXI Program
of the Portuguese Organization for Scientific and
Technological Research (JNICT).

REFERENCES

Bidarra, R. and Bronsvoort, W.F. (1996) “Towards
classification and automatic detection of feature
interactions”. In: Roller, D., editor, Proceedings of the
29th International Symposium on Automotive Technology
and Automation, pp. 99-108.

Bidarra, R., de Kraker, K.J. and Bronsvoort, W.F. (1997)
“Representation and management of feature information
in a cellular model”. Submitted for publication.

Dohmen, M., de Kraker, K.J. and Bronsvoort, W.F. (1996)
“Feature validation in a multiple-view modeling system”.
In: McCarthy, J.M., editor, CD-ROM Proceedings of
ASME 1996 Computers in Engineering Conference.

de Kraker, K.J., Dohmen, M. and Bronsvoort, W.F. (1995)
“Multiple-way feature conversion to support concurrent
engineering”. In: Hoffmann, C. and Rossignac, J.,
editors, Proceedings of the Third ACM/IEEE Symposium
on Solid Modeling and Applications, pp. 105-114.

de Kraker, K.J., Dohmen, M. and Bronsvoort, W.F. (1997a)
“Multiple-way feature conversion - opening a view”. In:
Pratt, M., Sriram, R.D. and Wozny, M.J., editors, Product
Modeling for Computer Integrated Design and
Manufacture, Chapman & Hall, London, pp. 203-212.

de Kraker, K.J., Dohmen, M. and Bronsvoort, W.F. (1997b)
“Maintaining multiple views in feature modeling”. In:
Hoffmann, C. and Bronsvoort, W.F., editors, Proceedings
of the Fourth ACM/IEEE Symposium on Solid Modeling
and Applications, pp. 123-130.

Kramer, G.A. (1992) “Solving geometric constraints systems:
a case study in kinematics”. The MIT Press, Cambridge,
MA, USA.

Mandorli, F., Cugini, U., Otto, H.E. and Kimura, F. (1995)
"Reflective control of attributed entities in feature-based
CAD systems using a CARW system manager"; In:
Tomiyama, T., Mäntylä, M. and Finger, S., editors,
Preprints of the IFIP WG5.2 Workshop on Knowledge
Intensive CAD-1, Espoo, Finland, pp. 217-244,
September 1995.

Noort, A. (1997) “Solving over-constrained geometric
models”. Master’s Thesis, Delft University of Technology,
The Netherlands.

Regli, B. and Pratt, M. (1996) “What are feature
interactions?”. In: McCarthy, J.M., editor, CD-ROM
Proceedings of ASME 1996 Computers in Engineering
Conference.

Sannella, M. (1992) “The SkyBlue constraint solver”,
Technical Report 92-07-02, University of Washington,
USA.

Vieira, A.S. (1995) “Consistency management in feature-based
parametric design”. In: Gadh, R., editor, Proceedings of
the ASME 1995 Design Engineering Technical
Conferences, Vol. 2, Boston, MA, pp. 977-987.

