Proceedings of DETC’97
1997 ASME Design Engineering Technical Conferences
September 14-17, 1997, Sacramento, California

DETC97/CIE-4275

AUTOMATIC DETECTION OF INTERACTIONS IN FEATURE MODELS

Rafael Bidarra, Maurice Dohmen and Willem F. Bronsvoort
Faculty of Technical Mathematics and Informatics
Delft University of Technology
Zuidplantsoen 4, NL-2628 BZ Delft, The Netherlands
Email: (Bidarra/Dohmen/Bronsvoort)@cs.tudelft.nl

ABSTRACT be solvedand maintainedboth at a feature’s creatiand in

Current feature-based modeling systems fail to adequately maintainSUbsequent modeling steps.

feature semantics. This is partly due to inappropriate specification of . W'J_[hOUt efectl_ve Va“quty malnt_enan_cg, or ircase the
validity conditions in feature classes, huginly due to a lack of validation constraintspecified are insufficient, themodeler

effective validity maintenance mechanisms througthbatmodeling will fail in preserving feature semantiasd, thus, in capturing
process. A critical aspect in this is feature interactrmnagement. designer intent. This is thmse in many commercial “feature-
This paper presents a new approachtite detection of feature based” systemswhich, for example, fail tonotify the
interactions, which uses semantic and interaction constraints intransmutation of a blind hole into a through holedapicted
feature class specification. Validity maintenance is automatically jn Figure 1.

performed after each modeling operation Ilohecking these
constraints, thus being able to detectasiety of interaction types.
Such interactionsire thenanalyzed, andheir causes identified and
reported to the user.

1 INTRODUCTION

Feature modelingsystems offerthe possibility to build a
product model with features. Thesee representations of
shape aspects of a physical prodticit aremappable to a Figure 1 - Blind hole transmutation due to slot
generic shapeand are functionally significant. Stated displacement
differently, each featurdas awell-defined meaning, which o
should be represented and preserved in a product model. Current researchprototypes that do perform validity
Several proposals have been made to approach theMaintenancesee fo_r exampl_e (dérak_er et al. 95), (Mando_rll
problems of specificatioand maintenance déature validity. et al. 95)and (Vieira 95),simply reject any user modeling
These were surveyed itDohmen et al. 96)and it was operationthatyields |nc0n5|stenC|es_ ithe fe_ature model. The
concluded that a declarative approach, where validity USEr then has to takebmealternative action, e.g. changing
specification is done separately from validity maintenance, Parameters of a feature, or evieking a feature of different

provides the best solution. Currently, no feature modeling type
system provides a really powerfahd self-contained scheme
for validity specification of feature classes. Most approaches
arebased on a variety a@bnstrainttypes, each ofvhich gives

a specific contribution inthe description of thebehavior X _
desired for instances of each class the feature library. further improvemenwould bethat hegets hints onhow to
Whenever a feature is instantiated, instances of its validation@0id or overcomethe problem.|deally, the system would

constraints are automatically created. Such constraints have tgutomatically adapt theodel to get a valid modelgain in
casesthis is possible and desirable, although thishould

However,this scheme seems tagid, as itmay often be
hard totracewhy invalidity arose or to find avay around it.
The leastthat is desirable isthat the user gets agood
explanation on what has caused the invalidation of a feature. A

1 Copyright © 1997 by ASME

probablynot be done without consulting the user. In phevi-
ous example of Figure 1he blind holemight beautomatically
converted into a through hole, if the user permits this.

Most validity violationsare caused by feature interactions,
which arise from modelig operations such as the creation of a
new feature oithe modification of an existing feature. It is

therefore important to manage feature interaction phenomena, o

so that allrelevant interaction situations can bietected,
reportedand handled in an appropriate w@egli and Pratt
96).

In short, a global solution tthe validationproblems pointed
out so far should include:

a) adeclarativescheme for flexible specification of feature
classes, allowing a finkining of thebehavior desired
for their instances;

b) aseparatevalidity maintenance mechanism;

elements (e.g.faces) should belong tahe model
boundary;
e attach constraintsspecify how afeature instance is
attached to the model, by couplimpme ofits feature
elements (i.efaces or edges) to elementsotifier features
already present in the model;
geometric constraintspecifygeometric relations, such as
parallelism and distance, between feature elements;
¢ dimension constraintspecify aninterval for the value of
feature parameters;
¢ algebraic constraintsspecify anexpression for feature
parameters.

Such constraints are createdtwo ways.First, they may be
embedded as attributes of a feature clabee generic feature
definition- and are, thus, instantiatémbether with each new
feature instance. Seconithey may be explicitly added by the

¢) monitoring each modeler operation issued by the user in yser, to further constrain or relatpecific feature instances in

order todetect feature interactions

d) reporting to the user theausesof any invalidity
situation, together with a detailed analysis of its
consequences;

e) providing the user with a reasonabl®ice ofreaction
mechanism# overcome invalidity situations.

Items a)and b)have already been dealt with in (Dohmen et al.
96). This previous work will be summarizednd somewhat
extended here (Section 2). tihnis paper we wilfocus onitem

c), thefeature interaction detection mechanig®ections 3
and 4). This is regarded as iadispensable step iraising the
level of assistance (required in itemsat)d e)) of a feature-
based modeling syster@urrent implementation of theggeas
within the $IFF- modeling system, a prototype multiple-view
feature-based modeler developed at Delft University of
Technology, is also described@he operation of interaction
detection algorithms is also illustrated with an exanmpteiel
(Section 5). Finally,some conclusionsare drawn on the
present approach, pointing ostmefurther developments in
this research (Section 6).

2 SPECIFICATION AND MAINTENANCE OF FEATURE
VALIDITY

An effective proposal for specificatiorand maintenance of
feature validity in feature modelbas been presented in
(Dohmen et al. 96)andimplemented in th@rototype system
SPIFF. This system has a mechanisnfor feature validity
maintenancebased onconstraint solving. Severalypes of
validation constraints are available; henly a brief
description of each one is given:
e semantic constraintspecify how afeature instance is
allowed to topologically deviate fromts canonical
behavior, by stating the extent to which itsature

! Named after Spaceman Spiff, interplanetary explexeiaordinaire _ﬁ’”’

the model. In either casthis is calledspecification of validity
conditions (either of individual features or of the feaimeel

as a whole). Amonghe constrainttypes presentedabove,
dimensionand semantic constraints aedways established on

a single feature instancentfa-feature constrainfs attach
constraints, on the other haradways couple feature elements
of two different featuresiigter-feature constrain)s geometric

and algebraic constraintmay be established between feature
elements or parameters either of the same feature or of
different features(intra- or inter-feature constraints). Inter-
feature constraintmay beregarded as defining dependency
relation among feature instances of the model. Such a relation
reflects which featurearedirectly dependent on (the elements
or parameter values of) any given feature.

The basic idea of our approach tisat after a modeling
operation hasbeen performedthe model is required to
conform to all existing constraints. The operation
unsuccessfuland thusrejected, if any ofthe constraints is
violated. This is calledalidity maintenance

Several advantages can be pointed out for this approach:

e the use of various constraint types for validity
specification in generic feature definitions permits a more
complete definition o&ll semantiaspects of each feature
class;

e user-added constraints can further assist in capturing
designer intent, still applying uniform constraint
management;

e once specified, validity islways maintainedhroughout
model editingthus ensuring that all iteature instances
are kept valid,;

e separated validity maintenance, performediring
incremental evolution ofthe model, allows for the
application of various techniques, including an
explanation mechanism for inconsistencies encountered
in this process.

is

2 Copyright © 1997 by ASME

This approach hasiow been extended ithree directions.
First, interactions among featuregusedduring incremental
editing of the model, aralso taken into account. In particular,
a variety of interaction classethat may affect feature
semantics have been identifiBidarra andBronsvoort 96). A
summary of these interactidgpes ispresented in Table 1.

Second, a new type abnstraints,interaction constraintsis

now used in feature classes #pecify whether a given
interactiontype should be disallowed for its instanc@sird,
analysis ofall invalid situations isperformed in order to
provide the user of the system with proper explanations of their
causes.

Table 1 - Interaction classes handled in SPIFF

SPLITTING INTERACTION

Ty

insertion of the slot splits the through hole boundary into disconnected
components

DISCONNECTION INTERACTION

enlargement of the through hole diameter disconnects part of the block
from the remaining of the model

BOUNDARY CLEARANCE INTERACTION

o

enlargement of the protrusion width obstructs entrance face of the
through holes

VOLUME CLEARANCE INTERACTION

L

insertion of a protrusion intrudes into the subtractive volume of the
V-slot

CLOSURE INTERACTION

9 &

displacement of the protrusion causes the whole volume of two blind
holes to become a closed void inside the model

ABSORPTION INTERACTION

v

insertion of a slot suppresses contribution of the through hole to the model
shape

GEOMETRIC INTERACTION

g &

insertion of a V-step changes the depth of the blind hole

TRANSMUTATION INTERACTION

—>

insertion of a V-step turns the blind hole into a through hole

w

Copyright © 1997 by ASME

Validity maintenance is performed irPISF by means of a
Constraint Manager, a Featuf@eometry Manager and an

Interaction Manager, under the control of a Feature Manager,

according to the architecture depicted in Figure 2.

| Graphical User Interface |

| Feature Manager |
/l Interaction Manager |\\
| Constraint Manager I

AN

| Solvers | (Constraint Graph

Feature Geometry
Manager

Cellular model

Figure 2 - Architecture of the SPIFF system

The Feature Manager receives commands from theissaed
via a graphical user interfacand sends appropriate requests
to the respective Managers, after whi¢he result of the
operation is returned to the user.

The Constraint Manager maintains all constraints in a
constraint graph, ansblvesthem by calling dedicatesblvers.
The constraint graph imapped ontdwo primitive constraint
graphs,one for primitive algebraic constrairded another for
primitive geometric constraints. The primitive algebraic
constraint graph issolved using the SkyBlue approach
(Sannella 92), the primitive geometric constraintsived
using theDegrees of Freedom analysis approé<tamer 92).
After a primitive graph haseen solvedthe constraint graph
maintained by the Constraint Manager is updated. In this way,
constraint solving is done fefiently by dedicated solvers,
while the Constraint Manager takes care of the
interdependence of the primitive constraint graphs.

The FeaturegGeometryManager maintains thgeometric
representation of the featureodel in a cellular model. 1t is
responsible for performing those operations, issued by the
Feature Managethat modify the cellular modelfor instance,
adding anew feature tdhe modelandremoving or modifying
an existing feature (de Kraker at. 97a). Eachfeature is
associated to one or more instancessivfipeclasses. Each

edges.Each cell elemensgtores in an owner list which shape
elements it belong to; analogously, each cell stores in an owner
list which shape(s) ibelongs to. Inthis way, thegeometric
representation of feature shapasd theirelements can be
selectively accessed at atigne, allowing forthe analysis of
actual feature semantics, as described in (Bidarra et al. 97).

The Interaction Manager performs the last stage of the
validation process, after each modeling operation: determining
whether any feature interaction occuand takingappropriate
action. For thiurpose, the othéwo Managers are queried,
according to the analysis required by the interactietection
mechanism described in the next section.

3 GLOBAL INTERACTION DETECTION MECHANISM

The global procedure of the Interaction Managey, for each
of the mainmodeling operations insertion modificationand
removalof a feature -, be subdivided into three main phases:
a) determination of the interactiorscope of each
operation;
b) detection of specific featunmteractions arisingrom
the operation;
¢) individual analysis of each interaction, which includes
reporting its causes.

Thefeature interaction scop@lS) of a modeling operation on
a featuref is determined by identifyingll feature instances in
the model that may potentially be affecteditoyfwo important
notions, with regard to a given featureare:

the set of featuresthat overlap with f, either
volumetrically or betweetheir boundaries; these features
make up theverlapping setf f, denotedOS(f) andthey
are identified by querying the Feature Geomé&tgnager,
which keepstrack of all feature shapesand their
intersections in the cellular model;

the set of featurethat depend orf; these features make
up thedependency saif f, denotedDS(f), andthey are
identified by querying the Constraint Manager, which
recursively traces ithe constraint graph th#ependency
relations orf.

Depending on the modeling operation, the feature interaction
scopewill consist of different combinations of overlapping and

shape instance accounts for a bounded region of space - thélependency sets.

shape extentA through holefor example, is associated to a
cylinder shape. The cellulamodel represents part as a
connected set of volumetric quasi-disjooatls in such a way
that each cell either lies entirely inside a shape extent or
entirely outsideit. Feature shapes adecomposednto cells;

overlapping feature shapes share one or more cells. TheManager.

complete boundary of a feature is decomposdd shape
elements, which aralso explicitly represented in termsadll
facesandedgeqor simplycell elements For the througtmole
exampleaboveits boundary isdecomposednto the cylinder
top, sideand bottom faces, as well dse topandbottom loop

Feature interactions takimgace on any feature of FIS are
detected by checkingtheir interaction and semantic
constraints. Detection algorithnigr eachtype of interaction
constraint are described in the next section.

Each constraint violation is recorded by the Interaction
Eventually,the set of constraint violations is
analyzed, in order to identifyheir causes, whichare then
reported to the user. Such explanatioypically include
references tdhe feature elements or parametargolved in
the invalidity situationand possiblyconflicting constraints
(Noort 97).

Copyright © 1997 by ASME

Insertion of a new feature inter-feature constraints, relating featuresD&(f) with f, is
kept “pointing” to theremoved feature. Fothis purpose,
several alternative reactionsay be devisedalthough most of
these should not be performed without requiring user
confirmation and/or input. Example reactions are, according to
the particular type of inter-feature constraint:
¢ attach constraints features attached fomay havetheir
attachmentmoved to anyother suitable feature of the
model; alternatively, the usemay choose to removbem
also, together witff
e (geometric constraints such features must be made
geometrically dependent on featutdst remain in the
model; alternatively, the constraimight beremoved, in
cases their positioning does not become under-
constrained;
¢ algebraic constraints the algebraic expression should be
changed so that it imade independent of any parameters
of f; alternatively, the constrairould be removed after
Modification of a feature involveschanging any of its fixing the values of all feature parameters it involves.
positioning or dimension parameters. Aftdr changes to the
feature have been specified lhe user, the Constraint
Managerre-solveghe modified constraingraph of themodel,
and theFeature Geometrilanager updates the cellulaodel
with the modified shape (or shapes).

The FIS of a modification operation on a featdrés the
union of OS(f), DS(f)and thesets OS({j of each feature in
DS().

The Interaction Manager performs the detection phase on
featuref and oneach feature in FIS. All interactiometected
are reported and classified into three categories: (i) interactions
on the modified featuref; (ii) interactions on its dependent
features, DS(f);and (iii) interactions onany overlapping In this section, detection procedurese presentedor the
feature, either of or of its dependent features. this way, interaction classes presented in Table 1. For eattieat, it is
occasional interactions caused indirectly by any dependentalso pointed out hovadditional information is collected, in
feature are nabdnly detected, but also properly reported. In the order to provide the user with a detailed explanation.

After instantiation of a new feature, together with its validation
constraints, the Constraint Managiwokes its dedicated
solvers. First, algebraic constraints arlved in order to
obtain values for unspecified parameters. Nettach and
geometric constraintare solved, in order to obtaiall shape
parameter values. Finally, thalues obtained for parameters
are checkedagainst the dimension constraints. Afthis, the
corresponding feature shape is instantisdad inserted into
the cellular model by the Feature Geometry Manager.

The Interaction Manager then determines @ of the
operation. At the insertion of mew featuref, there are no
dependencies of other featuresforet,i.e. DS(f)=<, and thus
FIS=0S(f). Finally, interaction detection is performedf@nd
all features in FIS.

Modification of a feature

In cases where DS(f) is emptihere is no further validation
required on the remaininfgatures, aftef and its constraints
have been removed frothe modeland the cellulamodel has
been updated. Otherwis¢éhe Constraint Manager first re-
solvesthe modified constraingraph, after which th&eature
GeometryManager updates the cellulanodel accordingly.
The Interaction Manager thehmecks interactioand semantic
constraints of alfeatures in FIS, just as fahe modification
operation.

4 DETECTION OF EACH INTERACTION CLASS

example of Figure 3, displacement of the upgeot implies Each of these algorithms is aimed at checking the
the displacement of the attached slot, whickuim causes the respective interactiogonstraint. For simplicitythe detection
transmutation of the blind hole. algorithms shown here operate on features woitlty one

shape; however, their extension to features consisting of
several shapes is straightforward. Otfilg detection algorithm
for disconnection interactions operates the whole model,
> provided that such interactions may take place without actually
splitting any single shape, bratherdisconnecting it from the
remainingmodel volume, se@idarra andBronsvoort 96) for
an example.
The algorithms shown makese of the functionality
Figure 3 - Indirect interaction caused by a dependent provided bythe Constraint Manager and tReatureGeometry
feature Manager in order tguerytheir data.Most of these methods
aredescribed in detail i(Bidarra et al. 97)for completeness,
Removal of a feature Table 2 gives a summary of those methods.

Removal of a featurefrom themodel is, fromthe interaction
management viewpoinsimilar to its modification However,
here the Interaction Manager has to make twenone of the Splitting interactions can be described in terms of the nature of

Splitting interaction

5 Copyright © 1997 by ASME

| cm.cells(nature)

Table 2 - Summary of methods used in the detection algorithms

| CELLULAR MODE |

s.nature returns the natureadditiveor subtractivg specified for shape s
s.elements returns the list of shape elements of shape s
s.cells returns the list of all cells that lie in the shape extent of s

s.boundary(nature)

returns the list of cell faces with specified nature that lie in the extent of shape elements o

s.overlappingSet(nature)

returns the list of shapes of specified nature that overlap with shape s (either volumetricall
between their boundaries - cell faces and edges)

y or

s.constraints(type)
| SHAPE ELEMENT, e
e.shape

returns the list of constraints of specified type established on shape s

returns the shape to which the element e belongs

e.cellFaces

| CELLc |

c.ownerlist

returns the list of cell faces that lie in the extent of shape element e

returns the list of shapes that own cell ¢

c.boundary

| CELL FACE, cf

returns the list of cell faces that bound the volume of cell ¢

l.last

| OWNER LIST, |

cf.cell i returns the cell bounded by cell face cf

cf.partner returns the partner cell face of cf that bounds an adjacent cell (if this exists)
cf.ownerlist returns the list of shape elements that own cell face cf

cf.nature returnsadditiveif the cell face cf lies on the model boundary, anldtractiveotherwise

returns the last element of the owner list |

|.after(element,, element)

returnstrue if element occurs after elemenin the owner list |

feature boundaries. They occur to a feature shape whenever thenteractions, butthey are better described in terms of the

cellular decomposition of its boundary is sublat thesubset
of its additive cell faces is not connected.

| Splitting interaction detection algorithm |

boundary <« s.boundary(additive)
cf 1 « boundary.first
for each cell face cf 2 in boundary
if not boundary.accessible(cf
return true
false

1,Cf 2) 2

return
additional data returned
e the split subsets of additive faces

Disconnection interaction

Disconnection interactions are analogous to splitting

2 Theaccessible(e3, e;) method of aet of entities returns TRUE iff:
a) for the two specified elemenés, ande,, eithere;=e, or
ej.adjacent(ey) holds; or
b) there is a third elemeat in theset such thak;.adjacent(
set .accessible(es €3),

and FALSE otherwise.

e3) and

behavior of additive shape volumes. They occur to additive
features wheneveahe cellulardecomposition othe model is
such that the subset of its additive cells is not connected.

| Disconnection interaction detection algorithm |

cells <« cm.cells(additive)
c1 « cells.first
for each cell ¢ 2 in cells

if not cells.accessible(c
return true
false

1,C 2)
return
additional data returned

e the split subsets of additive cells of the model

Boundary clearance interaction

Some semantic constraints, in particular those wpe
notOnBoundary(completely) , are intendedfor exam-

ple, to guarantee clearance on toolpath entréames of sub-
tractive features. A clearance interaction occurs to a
subtractive feature whenever such a semantic constraint on one
of its shape elements is not satisfied.

6 Copyright © 1997 by ASME

| Boundary clearance interaction detection algorithm |

semanticConstraints <« s.constraints(semantic)
for each sc in semanticConstraints
if sc.type = nob(completely)
return true
return false

additional data returned

¢ the shape element with the unsatisfied semantic
constraint

e the shape(s) causing the constraint violation

and not sc.check

Volume clearance interaction

A volume clearancateraction occurs to a subtractive feature

whenever a subset afs volume is later occupied by an

additive feature. The detection dfis interaction relies on
checking the ownerlist ol cells in the subtractive feature

shape.

| Volume clearance interaction detection algorithm |

for each cell ¢ in s.cells
list <« c.ownerlist
for each shape s
if list.after(s
return true
return false

additional data returned
e the additive feature shape causing the interaction

i inlist

i,s)ands .nature = additive

Closure interaction

This interactionclass may beharacterized by theccurrence
of a (group of interacting) subtractive feature(shose

(compound) volume becomes a closed void inside the model.

In the case ofsingle closure, there ionly one feature

Absorption interaction

Absorption interactionsare better described in volumetric
rather than in boundary terms. They occueitber an additive

or a subtractive feature, whenever it ceases to contribute to the
model shape. A sufficierdnd necessary condition ihat all

cells ofthe absorbed feature shapee containedh, i.e. owned

by, one or more other interacting shapé&his information is
explicitly stored inthe ownerlist of a cellwhoselast element
stands forthe shapethat most recently occupiedhe cell
volume.

| Absorption interaction detection algorithm |

for each cell ¢ in s.cells
if c.ownerlist.last = s
return false
return true

additional data returned
e the set of interacting shapes causing the absorption

Geometric interaction

Geometric interactions on a subtractive featare described

by a combination of volumetriand boundary conditions on
shape elements. Informally, thesan bedescribed as the
removal of a “slice” othe feature shape adjacent to one of its
shape elements. The detection algorithm, thus, analyzes, for
each shape element, thkeoundary of all cells in its
neighborhood.

The *“amount” of geometric interaction (i.e. the
computation of the actual parametealue shown), requires
additional geometric queries: determination (i) of the
parameter related with the shape element, (ii) ofélpective
direction, and (iii) of thedimension of the remaining shape
volume in that direction.

shape involved and, hence, a necessary and sufficient condition

is that its whole shape boundary is totally presenthemodel

boundary,i.e. it has nosubtractive cell faces. In multiple

closure, howeversuch cellfaces may occur othe involved
features’ boundaries, but onlgeparating theiroverlapping
volumes. Thereforghe detection algorithm exits ason as it

finds one cellface of these boundari¢kat is not separating

two subtractive cells.

| Closure interaction detection algorithm |

closedShapes <« s u s.overlappingSet(subtractive)
for each shape s i in closedShapes
for each cell face cfin s i .boundary(subtractive)
if not exists cf.partner
return false
else
closedShapes.add(cf.partner.ownerlist.last.shape)
return true

additional data returned
e the set of closed feature shapes

| Geometric interaction detection algorithm |

for each shape element e in s.elements
geom_int <« true
for each cell face cf in e.cellFaces
for each cell face cf i in cf.cell.boundary

if cf j.nature = additive
geom_int « false
exit
if not geom_int
exit
if geom_int

return true
return false

additional data returned
e the shape element(s) involved
e the actual parameter value(s)

7 Copyright © 1997 by ASME

Transmutation interaction

Transmutation interactions are analogous geometric | Transmutation interaction detection aigorittm |

interactions, in thathey also act on a shape eleméfihen a for each shape element e in s.elements
shape elemer has a semantic constraint, s&mantic nature 7 e semanicNature
denoted_e_.semanti_cN_ature , is define_d as: _ transm_int <« true
additive , if it has a semantic constraint aype for each cell face cf in e.cellFaces
onBoundary : ' Cft.rr:rllt:rrr? |_r1tn « false
subtractive , If it has a semantic constraint type exit
notOnBoundary ; and if "f‘e”tsf;]—imtr .
. . u u
nil , otherwise. return false

With a transmutation, the nature of aBll faces of a shape | additional data returned

element is opposite tils semantic nature. Shape elements on | ¢ the shape element with the unsatisfied semantic
which there are no semantic constraispecified (meaning constraint

that their presence/absence on the model boundary is irrelevanf o the identified feature class of the transmutated featufe
for feature semanticgre, thus, nosubject tothis interaction

class. To dete_rmine the poter_ﬂr‘rﬂw class othe trfinsmutated 5 INTERACTION DETECTION EXAMPLES

feature, a dedicated module is uskdt performs incremental _ _ _ _

identification of features in the cellular modsée (deKraker In this section we illustrate with an example several classes of
et al. 97b). interactions that araletected bythe algorithms presented

above. Westart up with themodel in Figure 4, which consists

[—
I YWorking on example_guimod

| awned by design

hlain Display Extra

Feature options

i 0 e ————————————————————————
Modify parameters for ThruHole_z: Graph for design view

=

top: Step_1

3|
bottom: BaseBlock_1 g back
S

1+ [1# 1 J1e

distFaceT: Step_1 | bottom
distFace2: BaseBlock_1 ﬂ right
\eg,.
o r
posli 60 = _ R I
j radius:|3.0 j
posziEo |

Help Reset | Apply | Dismiss

| [rete |

Feature: [ThruHole_z
I | |

Figure 4 - Example feature model created in SPIFF

o]

Copyright © 1997 by ASME

of a base block, a rectangular step, two blind statsthrough causes unclearance thfe blind and througkoles; in (e) the
holes and a blind hole. two blind slots see their effective length reduced due tstépe

By means of the graphical user interface efFS the insertionovertheir entrancdaces;and in (f) one ofthe blind
above model can be edited, for instance by modifying one of its slots overlaps wittthe other when displaced, resulting in the
features or adding aew one. Figure 5 shows a variety of geometry of a unique, larger blind slot.

interaction situations which haueeen derived irthis way. In It should be recalledhat the actualdetection of such
(a) the blind hole boundary has no subtractive cell faoesb,s interactions depends on the explicit presence ofdébpective
thusclosedinside the model; ifb) the througtslot is inserted interaction constraint in the affected feature instances.

such that its additive boundarybecomessplit into three
disconnected subsets; in (tle same througslot is inserted 6 CONCLUSIONS AND FUTURE WORK
with an excessively largedepth, causing thebase block

disconnection; in (d) a decreasethe rectangular step depth Validity maintenance of feature models is nobmplete

without proper management of feature interactidimss poses

@ (b) splitting @

(c) disconnection

(a) closure

SN

(d) boundary clearance (f) transmutation

(e) geometric
Figure 5 - Some interaction situations caused by editing the model of Figure 4

9 Copyright © 1997 by ASME

strong requirements at variougvels of a feature-based
modeling system, in particular at the:

o specification level of feature classes;

e geometric representation level of feature models;

o operational level of the modeler.

The approachdescribed inthis paper has thdollowing
advantages. It:
¢ permits finetuning of validity specification (both at the
generic feature definition level and at any modeling stage)
for all feature instances in the model;
¢ ensures feature validity after each modeling operation;
¢ detects and classifies edadhd of interaction occurring in
the model.

Future research includes the generatiorpagsible reaction
methods to interactions detectednd the development of
mechanisms for automatic recovery of model validity.

ACKNOWLEDGMENTS

Rafael Bidarra’svork is supported bthe Praxis XXI Program
of the Portuguese Organization for Scientific and
Technological ResearchncT).

REFERENCES
Bidarra, R. and Bronsvoort, W.F. (1996) “Towards

classification and automatic detection of feature
interactions”. In:Roller, D., editor, Proceedings of the

29th International Symposium on Automotive Technology

and Automationpp. 99-108.

Bidarra, R., de Kraker, K.Jand Bronsvoort, W.F. (1997)
“Representatiorand management deature information
in a cellular model”. Submitted for publication.

Dohmen, M., de Kraker, K.J. andronsvoort, W.F. (1996)
“Feature validation in a multiple-view modeling system”.
In: McCarthy, J.M., editor,CD-ROM Proceedings of
ASME 1996 Computers in Engineering Conference

de Kraker, K.J., Dohmen, M. andBronsvoort, W.F. (1995)
“Multiple-way feature conversion to support concurrent
engineering”. In: Hoffmann, C. andRossignac, J.,
editors,Proceedings of th@hird ACM/IEEE Symposium
on Solid Modeling and Applicationpp. 105-114.

de Kraker, K.J., Dohmen, M. ar8ronsvoort, W.F. (1997a)
“Multiple-way feature conversion - opening a view”. In:
Pratt, M., Sriram, R.D. and d¥ny, M.J., editorsProduct
Modeling for Computer Integrated Design and
Manufacture Chapman & Hall, London, pp. 203-212.

de Kraker, K.J., Dohmen, M. ar8ronsvoort, W.F. (1997b)
“Maintaining multiple views in feature modeling”. In:
Hoffmann, C. andBronsvoort, W.F., editor®roceedings
of the Fourth ACM/IEEE Symposium on Solid Modeling
and Applicationspp. 123-130.

Kramer, G.A. (1992)'Solving geometric constraintsystems:

a case study ikRinematics”. The MIT Press, Cambridge,
MA, USA.

Mandorli, F., Cugini, U., Otto, H.Eand Kimura, F.(1995)
"Reflective control of attributed entities in feature-based
CAD systemsusing a CARW system manager"”; In:
Tomiyama, T., Méntyla, M.and Finger, S.editors,
Preprints of thelFIP WG5.2 Workshop on Knowledge
Intensive CAD-1 Espoo, Finland, pp. 217-244,
September 1995.

Noort, A. (1997) *“Solving over-constrained geometric
models”. Master’s Thesis, Delft University of Technology,
The Netherlands.

Regli, B. and Pratt, M. (1996) “What are feature
interactions?”. In: McCarthy, J.M., editor,CD-ROM
Proceedings of ASME 1996 Computers in Engineering
Conference

Sannella, M. (1992) “TheSkyBlue constraint solver”,
Technical Report 92-07-02, University ofaghington,
USA.

Vieira, A.S. (1995)Consistencymanagement ifeature-based
parametric design”. In: GadiR., editor,Proceedings of
the ASME 1995 Design Engineering Technical
ConferencesVol. 2, Boston, MA, pp. 977-987.

10

Copyright © 1997 by ASME

