

Abstract— Manual content creation for virtual worlds can no

longer satisfy the increasing demand arising from areas as
entertainment and serious games, simulations, movies, etc.
Furthermore, currently deployed modeling tools basically do not
scale up: while they become more and more specialized and
complex, they strikingly fail to assist designers in concentrating
on their creative tasks.

This paper presents the main concepts of what we designate
declarative modeling of virtual worlds, a novel modeling approach
that allows designers of virtual worlds to concentrate on stating
what they want to create instead of on describing how they
should model it. We discuss the two main characteristics of this
approach – semantics and procedural generation – and describe
how they mutually reinforce, support and amplify designers'
efforts, thus empowering their creative skills.

We conclude that this declarative approach provides designers
with the productivity gain of procedural generation techniques,
while still allowing for abundant control and flexibility. In
addition, it significantly reduces the complexity of virtual world
modeling, making it accessible to whole new groups of users and
applications.

Index Terms—declarative modeling, procedural methods,
semantics, virtual worlds.

*R. Bidarra and T. Tutenel are with the Computer Graphics Group, Delft

University of Technology, The Netherlands (*corresponding author: +31 15
278 4564; e-mail: R.Bidarra@tudelft.nl).

K.J. de Kraker and R.M. Smelik are with the Modelling, Simulation &
Gaming Department, TNO Defence, Security and Safety, The Netherlands.

This research has been supported by the GATE project, funded by the

Netherlands Organization for Scientific Research (NWO) and the Netherlands
ICT Research and Innovation Authority (ICT Regie).

I. INTRODUCTION
ESPITE all technological developments and so many
advanced tools and techniques, current content creation

for virtual worlds still keeps much of the handcraft character
of traditional creative work. Nowadays, this fact is becoming
more and more critical, because of the increasing demand for
and complexity of such labor-intensive content. For this
reason, the potential of procedural methods as an alternative to
manual content creation is attracting increasing attention and
research efforts from both industry and academia.

Most currently available procedurally-based content
creation methods and tools do partially address these demands
by offering semi-automated procedural solutions that help
generate parts of virtual worlds (e.g. terrains, roads, cities or
buildings). However, for most designers, they present several
fundamental drawbacks, e.g. they are mostly technically
complex, run at non-interactive rates, are often unintuitive in
use, yield just one specific type of content, and hardly offer
proper control on the output, which in turn cannot easily be
integrated into a complete and consistent virtual world. Table
I briefly summarizes the strengths and weaknesses of most
manual 3D modeling and traditional procedural modeling
approaches used so far in designing virtual worlds [1], [2].

To date, no research method or commercial tool has been
proposed that provides an integrated solution to the problem
of procedurally creating a complete virtual world, ranging
from a mountainous landscape to man-made structures. We
believe that overcoming this challenge will be instrumental in

Integrating semantics and procedural generation:
key enabling factors for declarative modeling

of virtual worlds
R. Bidarra, K.J. de Kraker, R.M. Smelik, T. Tutenel

D

the much desired acceptance of procedural methods in
mainstream virtual world development.

We developed one such integrated approach – declarative
modeling of virtual worlds –, which combines the strengths of
both manual and procedural modeling (see Table I), and thus
provides a less complex and more productive workflow to
model virtual worlds. In this paper we describe the main
concepts of this novel modeling approach which, in essence,
enables designers of virtual worlds to concentrate on stating
what they want to create instead of on describing how they
should model it.

After a short overview (Section 2), we describe the two
main characteristics of this approach – semantics (Section 3)
and procedural generation (Section 4) – and finally discuss
how they mutually reinforce, support and amplify designers'
efforts, thus empowering their creative skills (Section 5).

II. DECLARATIVE MODELING OF VIRTUAL WORLDS
From the analysis of Table I above, it follows that a hybrid

solution combining the strengths of both approaches should be
sought. We argue that in order to achieve this synthesis, the
missing key element in current systems is a resolute and
consistent deployment of the high-level modeling vocabulary
actually used by designers in their creative process. In other
words, the tools provided to designers should support and
capture their intent, by understanding and operating at the
level of semantics they are used to. For example, virtual world
designers might prefer to simply state:
(a) that this hilltop should have some sort of visibility, while

they are sketching a mountainous terrain; or
(b) that they want a medieval-typed city along these river

banks, which centre should concentrate around three
bridges at the indicated points; or

(c) that the interior of this house should be richly laid out and
furnished in an art nouveau style, whereas for that office, a
clumsy, decayed fashion is desirable; or

(d) that a given warehouse should be crammed with old, dusty
crates and rusty barrels in a mess.
The above are very clear examples of declarative modeling:

statements that express and describe what you want (your
intent), without assumptions or remarks on how you should
bring it about. The novel approach we bring forward here is
based on this paradigm, and we therefore properly designate it
declarative modeling of virtual worlds. In essence, this

approach proposes to apply a variety of semantics-based
techniques to overcome each of the weaknesses of procedural
modeling methods identified in Table I. In Fig. 1 we
schematically describe the generic terms of its main workflow.

Basically, this scheme differs from conventional
procedurally-based modeling, sporadically used by designers
and technical artists, in that it incorporates a semantics layer
between the designer and the procedural techniques. This
semantic level, provides designers with a powerful front-end
that generates and steers the underlying procedural level,
while encapsulating the complexity of the latter.

At the semantics level, designers have at their disposal
high-level tools and methods which, so to say, 'talk their
language'. Here we distinguish three generic categories:
features, in a very broad sense, constitute the basic

vocabulary to express their creative design intent. One can
think of all sorts of objects and abstract classes (nouns like
tree, hill, road, chair, knife, etc.), but also of many actions
that somehow are meaningful for the gameplay (verbs like
catch, open, fill, destroy, etc.);

relations assist designers in further specifying their intent for
some (groups of) objects or for an aspect or part of the
virtual world. Typical examples of relations are not only
geometric constraints between objects (distance, adjacency,
etc.), but also logical roles and functional conditions among
them (e.g. 'freezer requires power', 'water lessens thirst',
'bridge connects riverbanks');

specifications are the closest designers might wish to come to
an actual procedure, providing them with a sort of
'language' for specifying the 'vision of the scene or world'
they have in mind. For example, they may describe how

Table I Strengths and weaknesses of both manual and traditional procedural
modeling approaches

 Manual modeling Procedural modeling
Productivity
Adaptability

Variation
Intuitiveness
User control
Interactivity

Versatility
Completeness

Simplicity

Fig. 1 Generic approach of declarative modeling of virtual worlds

many of which features should occur under which
circumstances in the virtual world; or how strict certain
predicates or relations among which features should be
enforced. Specifications may also typically include object
attributes, properties or modifiers (adjectives like large, full,
old, dirty, etc.) which characterize under which appearance,
state or presentation features should be created or laid out
in the world, etc.

Two advantages of this approach become apparent from

this scheme. First, the above elements of designers' intent
provide the necessary 'intelligence' to be able to select and
configure the appropriate types of procedure methods, or even
generate new procedures that suit that intent. Typically, as
pointed out in the Introduction, each procedural method yields
just one type of content. However, we now possess a higher
level insight on the desired global results. Therefore, we are
able to select, trigger and control each of those methods and
their partial output. Together, they combine to bring in the
variety and richness devised by the designer for the virtual
world.

The second advantage of this approach is that during a
declarative modeling session, we are not just interpreting user
commands and passing them on to drive the procedural
methods below. Instead, we are incrementally gathering all
expressions of designer's intent in a structured manner, so that
a consistent high-level model of the virtual world, in terms of
its meaningful features, can be maintained throughout the
iterative design process. Consequently, each new modeling
action can more easily be faced with that model, in order to
assess to what extent it conforms to all previous designer
intent expressed so far. Whenever any conflicts are detected,
their solution will naturally be much more complete and
adequate if sought at this same semantics level, because it is
much closer to the way of thinking of designers (and also
because their intervention, at some point, might even be
indispensable). For example, if a designer decreases a room's
dimension such that its specified furniture no longer fits in it,
he might be asked to revise those furniture specs; or if a town
was built along a road, and this road is subsequently rerouted
within the virtual world, the designer might have to decide
whether the town is also meant to move together with it.

We have implemented a declarative framework, called
SketchaWorld, which demonstrates the feasibility of this
approach, and its suitability for modeling complete virtual
worlds. In the next two sections, we briefly discuss several
aspects and facilities of this framework, illustrating with some
examples how it integrates semantics and procedural methods,
respectively.

III. SEMANTICS
As depicted in Fig. 1, the SketchaWorld framework deals

with all high-level information relating to virtual world
objects at the semantics level. In this context, we have defined
object semantics as all information, beyond its 3D geometric

model, that helps conveying the meaning and the role of the
object in the virtual world [3]. This semantics includes
features, relations between features and further specifications.

One of our main schemes for specifying and representing
this knowledge is the semantic library. It is partly based upon
WordNet [4], a database that includes a complete dictionary of
the English language, with descriptions, disambiguation
between multiple meanings of the same word and, most
importantly, among other things, parent-child relationships
between different concepts. Every class in the semantic library
is a WordNet concept derived from the physical object
concept. Among other entities, the semantic library contains
generic descriptions of classes of features (e.g. seat, window,
bridge or road), including attributes, properties, roles, etc. The
semantic library can be easily edited and expanded with new
classes, e.g. by means of the usual inheritance and
specialization mechanisms, using an intuitive interface.

In the semantic library, we extended the WordNet database
with the ability to define various relations between features,
including e.g. geometric constraints. With them, you can
define, for example, that a vase should be placed on the
windowsill, or that a street requires lampposts to be placed
every 50m at the sidewalk, or that a certain type of city
'prefers' a commercial district somewhere near its center. By
defining such generic properties and relationships at the class
level, they automatically hold for every concrete instance of a
class (e.g. all seats) and of all its subclasses (e.g. chairs,
banks, sofas) in the virtual world. Logically, whenever desired
the designer can override or extend this semantics for specific
instances. Relationships like the geometric constraints above,
defined in classes, are very useful in both manual and
procedural modeling settings. In the former, for example,
objects being manually placed in a virtual world can
automatically be snapped to a valid position within their
environment. The use of relationships in combination with
procedural modeling techniques is dealt with in the next
section. A more detailed overview of the semantic library can
be found in [5].

In the SketchaWorld framework, the features from the
semantic library provide the high-level vocabulary for the
various forms of interaction, by means of which designers
declare their intent for specific scenes and virtual worlds. For
example, designers can define a natural landscape from its top
view by brushing a grid with ecotopes (an area of
homogeneous terrain and features). These ecotopes
encompass both elevation information (elevation ranges,
terrain roughness) and soil material information (sand, grass,
rock, etc.). Designers can also sketch terrain features as roads,
rivers or complete cities, by interactively indicating where and
relative to what they are to be placed (see cover Fig). And a
designer can also describe a desired scene or environment, by
means of its semantic specification (from which various
procedures are to be generated or invoked), indicating e.g.
which objects should be placed inside this particular type of
office, which ambiance this should be given, or what are the
main conditions for its layout. In the next section we briefly

describe how this declarative input of the designer is used to
procedurally create a concrete and matching instantiation of
the virtual world

One last aspect worth mentioning is that, in addition to its
usefulness during the modeling process, semantically rich
content can also play a very important role at runtime in many
applications of virtual worlds, e.g. entertainment games,
training simulators, etc. For instance, during a game or
simulation, an artificial intelligence component can more
easily reason over the virtual world using much of the virtual
world semantics, defined in the modeling process, instead of
relying only on separate, usually ad-hoc data structures, for
planning paths and actions of virtual characters. Another
example of applying object semantics at runtime is to improve
the behavior semantics of objects, when user or virtual
character interacts with it. For this purpose, we introduced the
concept of services in our semantic library [6]. These services
are specified in the available classes, again relying on its
parent-child relationships and class attributes to make their
definitions inherited and reusable. For instance, every physical
object that is heavy enough and not too big, can be used to
e.g. break open a window in a game world. Instead of having
to annotate every game object suitable for this purpose, in our
semantic library this 'service' needs to be defined solely for the
main physical object class, applying only to classes that
comply to stated weight and size constraints. The concept of
services enables designers to easily create virtual world
objects that are aware of each other's services, and behave as
one would reasonably expect; as such, it is an important step
towards improving object interaction in a virtual world.

IV. PROCEDURAL GENERATION
SketchaWorld allows one to create complete, highly

detailed virtual worlds by simply stating one’s whishes. The
combination of semantics and integrated procedural methods
allows it to automatically generate a realistic virtual world that
fully matches with the high-level declaration by the designer.

One of the innovative declarative input methods introduced
by SketchaWorld is designated as procedural sketching [7], a
novel paradigm which significantly increases the usability of
procedural modeling techniques, and provides a fast and
intuitive way to model virtual worlds. Procedural sketching
allows designers to quickly specify terrain features and
directly see the effects of the resulting procedural modeling
operations. It lets designers interactively sketch their virtual
world in terms of high-level terrain features; for instance, one
can coarsely sketch out an area for a city or forest. These
sketched features are then procedurally expanded by a variety
of integrated procedural methods and properly fit into the
virtual world, adhering to the feature’s semantics and
relationships with surrounding features. Design of a virtual
world is a creative and iterative process, therefore procedural
sketching provides a short feedback loop between each sketch
operation and the visualization of generated results. This,
combined with unlimited undo and redo facilities, strongly

encourages designers to experiment and quickly check the
effects of their modeling operations.

On the procedural level (see Fig. 1), SketchaWorld
integrates many procedural modeling techniques to
automatically create a variety of content that match with
designer’s intent, stated using either procedural sketching or
any of the other forms of high-level scene descriptions
mentioned above. We can distinguish three categories of
procedural modeling techniques used: feature creation, feature
placement and feature fitting.

Some of the features that are placed in the world include
fixed geometric models. For many other features, however,
their exact form and appearance are created with procedural
generation techniques in order to better fit them in their
context. For example, specific techniques are used to shape
the landscape and rivers, to generate the facades of buildings
or to alter a bridge to match requirements as length, supported
weight, number of road lanes, etc.

In addition, to place heterogeneous groups of features or
objects in the virtual world, SketchaWorld uses a layout
solving approach [8]. As explained in the previous section,
features typically contain geometric relationships that are used
by the layout solver to find a valid location according to their
semantics: where to place furniture inside a room, or where to
place forests in a landscape. This layout solving approach was
used to create the furniture layout of the kitchen and living
room shown in Fig. 2. Designers can steer the placement of
features, e.g. by providing a coarse layout with procedural
sketching, by describing placement hints or by configuring
other preferences. In any case, after automatic placement,
designers can always intervene, where desired, by modifying
the placement of individual features.

Traditional procedural generation techniques only generate
one specific part of a virtual world [9]-[12]. Fitting all these
generated features to form a consistent and lifelike virtual
world is not a trivial matter. The influence of features on their
surroundings goes both ways: a new feature adapts to fit in
with its surroundings, but at the same time affects nearby
existing features. For example, when a road feature is
introduced into a virtual world, the road path needs to adapt to

Fig. 2 The placement of the furniture in these rooms was handled by our
layout solving approach based on the geometric relationships between the
different feature classes defined in the semantic library.

the landscape, e.g. to avoid steep slopes and impassible
terrain; reversely, the local elevation profile of the landscape
also needs to be adjusted in order to create a smooth road
surface and embankment; and, in case it crosses a river, a
bridge feature needs to be inserted and embanked too. Using
the object relationships described in the previous section, our
approach automatically fits all generated terrain features with
their surroundings, and detects and solves conflicts arising
among features. See [13] for more details on automatic virtual
world consistency maintenance.

The consistency among all features in the virtual world
model is automatically maintained not only throughout the
execution of procedural modeling operations, but also when
the designer chooses to manually edit parts of the world.
Normally, such operations may have consequences for other
surrounding features. For example: when moving a road, all
adjacent lots and buildings typically need to move with them,
and if the road becomes longer, new building features might
need to be generated and fitted; or when a table is removed
from a room scene, the plates and cutlery lying on it should
likely be removed as well. Therefore, relationships among
features expressing design intent need to be validated also
after such manual edits, possibly involving a partial
regeneration of an affected area of the virtual world.

By integrating both new and existing procedural generation
techniques within the SketchaWorld framework, and
transparently steering them through high-level operations on
the virtual world model at the semantic level, the realism of
the integrated output of those techniques is significantly
improved. But above all, it elevates procedural modeling to
the level of a real declarative modeling approach, effectively
providing intuitive semantic concepts close to the level of
designer’s intent.

V. CONCLUSIONS
Increasingly detailed and complex virtual worlds are

nowadays commonly used in most entertainment and serious
games, simulations, etc. We identified the main challenges
and increasing demands currently faced by designers of virtual
game worlds, and concluded that procedural modeling
techniques only partially address them.

We proposed declarative modeling of virtual worlds as a
novel approach, which more thoroughly and successfully
solves these challenges. It combines the integrated use of
various procedural modeling techniques with a semantics-
driven model that effectively allows capturing designer's
intent. As a result, designers of virtual worlds, using an
intuitive vocabulary and familiar interaction, can concentrate
on stating what they want to create, instead of on describing
how they should model it. Several features of SketchaWorld,
our prototype system that implements this approach, have also
been discussed and illustrated.

Salient feature of this declarative approach is that it retains
in the model of the virtual world much more information than
simply its geometric data. On the one hand, this semantically-

rich content facilitates providing designers with a declarative
vocabulary that is more intuitive and much closer to their
creative way of thought. On the other hand, once available for
in-game use, such semantically-rich content can dramatically
improve the interaction among objects, therefore improving
gameplay as well.

SketchaWorld demonstrates that our declarative modeling
approach provides designers with the productivity gain of
procedural generation techniques, while still allowing for
abundant control and flexibility. In addition, its framework
provides us with a flexible base to integrate numerous
techniques and algorithms from procedural modeling research.
Finally, its interactive workflow significantly reduces the
complexity of virtual world modeling, making it accessible to
whole new groups of users and applications.

REFERENCES
[1] R. M. Smelik, K. J. de Kraker, T. Tutenel and R. Bidarra, "A Survey of

Procedural Methods for Terrain Modelling," Proceedings of the CASA
Workshop on 3D Advanced Media in Gaming and Simulation
(3AMIGAS) Amsterdam, The Netherlands, 2009, p. 15-24.

[2] G. Kelly and H. McCabe, "Interactive City Generation Methods,"
SIGGRAPH '07: ACM SIGGRAPH 2007 Posters San Diego, CA, USA,
2007.

[3] T. Tutenel, R. Bidarra, R. M. Smelik and K. J. de Kraker, "The Role of
Semantics in Games and Simulations," ACM Computers in
Entertainment, vol. 6, no. 4, pp. 1-35, December 2008.

[4] G. Miller, "WordNet: A Lexical Database for English," Communications
of the ACM, vol. 38, no. 11, pp. 39-41, November 1995.

[5] T. Tutenel, R. Bidarra, R. M. Smelik and K. J. de Kraker, "Using
Semantics to Improve the Design of Game Worlds," Proceedings of the
fifth Artificial Intelligence and Interactive Digital Entertainment
International Conference Stanford, CA, USA, 2009, p. 100-105.

[6] J. Kessing, T. Tutenel and R. Bidarra, "Services in Game Worlds: A
Semantic Approach to Improve Object Interaction," Proceedings of the
8th International Conference on Entertainment Computing (ICEC) Paris,
France, 2009, p. 276-281.

[7] R. M. Smelik, T. Tutenel, K. J. de Kraker and R. Bidarra, "Interactive
Creation of Virtual Worlds Using Procedural Sketching," TBP in:
Proceedings of Eurographics 2010 - Short papers, 3-7 May, Norrköping,
Sweden, 2010.

[8] T. Tutenel, R. Bidarra, R. M. Smelik and K. J. de Kraker, "Rule-based
Layout Solving and its Application to Procedural Interior Generation,"
Proceedings of the CASA Workshop on 3D Advanced Media in Gaming
and Simulation (3AMIGAS) Amsterdam, The Netherlands, 2009, p. 15-
24.

[9] J. Gain, P. Marais and W. Strasser, "Terrain Sketching," Proceedings of
the 2009 Symposium on Interactive 3D Graphics and Games (I3D '09)
Boston, MA, USA, 2009, p. 31-38.

[10] M. de Villiers and N. Naicker, "A Sketching Interface for Procedural
City Generation," Technical Report, Department of Computer Science,
University of Cape Town, 2006.

[11] E. Bruneton and F. Neyret, "Real-time Rendering and Editing of Vector-
based Terrains," Computer Graphics Forum: Eurographics 2008
Proceedings, vol. 27, no. 2, pp. 311-320, April 2008.

[12] O. Deussen, P. Hanrahan, B. Lintermann, R. Mech, M. Pharr and P.
Prusinkiewicz, "Realistic Modeling and Rendering of Plant
Ecosystems," Proceedings of the 25th Annual Conference on Computer
Graphics and Interactive Techniques Orlando, Florida, USA, 1998, p.
275-286.

[13] R. M. Smelik, T. Tutenel, K. J. de Kraker and R. Bidarra,
"SketchaWorld: A Declarative Framework for Procedural Modeling of
Virtual Worlds," submitted for publication.

