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Abstract 
 
Due to the increase in magnitude and level of detail of 
next-gen games, the time required to manually design a 
game level has increased dramatically. This paper 
introduces procedural natural systems, a novel 
approach aimed at reducing the time needed to design 
large-scale natural phenomena for game levels. The 
concept of natural systems separates the shape of a 
natural phenomenon from its footprint, allowing a 
designer to edit either of them separately. Various 
procedural techniques are used to combine the shape 
and footprint of a natural system, as well as to tweak 
these in real-time in a game world. We conclude that 
natural systems provide a solid foundation for intuitive, 
flexible and efficient procedural generation of 
significant portions of a game level. 
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1. Introduction 
  

As predicted by Moore [1965], computational 
performance has roughly doubled every two years, 
each new generation of computer hardware opening 
doors to endless new possibilities. Likewise, new 
generations of game hardware, often referred to as 
next-gen, have enabled game developers to create 
games that are more realistic and immersive than ever 
before. Along with this increase in possibilities, 
customer expectations and demands have also 
increased, forcing game developers to deliver whatever 
becomes technically possible. 

Although technological growth has been 
exponential, game content production efficiency has 
not grown at an equal pace. Most digital content, even 
today, is created manually. With ever more detailed 
game content, the time and money it takes to develop 
games has increased dramatically.  

One of the most promising ways for game 
developers to cope with this problem is to increase the 
efficiency of content creation. This can be achieved by 
automating the content creation process as much as 
possible, reducing the amount of work done manually. 
Here, a prominent role is reserved for procedural 
content generation methods. Although these methods 
have already been successfully applied to create 
specific game content, the design of large-scale natural 
phenomena like rivers and mountains ridges is still far 
from optimal. The main reason for this is that editing 
natural phenomena often involves changing many 
different aspects of the game world, e.g. the height and 
texture of the terrain and the 3D models that populate 
the world. Because these modifications still often have 
to be done manually, this makes designing natural 
phenomena a very tedious activity, and making 
changes afterwards a prohibitive practice. 

Basically, current procedural techniques developed 
for level design fall short in a number of areas. In 
Section 2 we take a look at the current state of tools for 
level design and procedural content creation methods.  

To address the current issues, and allow for large 
natural phenomena to be placed and modified in a 
game level, we propose procedural natural systems: an 
approach to assist designers in creating large natural 
phenomena. A natural system consists of a footprint 
that contains the ‘appearance’, a shape that controls the 
placement, and a procedure that combines the footprint 
and shape to generate an instance of the natural system 



in the game world.  
The principal contribution of our work lies in the 

flexibility of this separation of footprint and shape, in 
their efficient reusability, and in the intuitivity of 
supporting intermixed manual tweaks in real-time. 

The main concepts of procedural natural systems are 
described in more detail in Section 3. In Sections 4 and 
5 we show how we put this concept to practical use in 
a prototype level design tool. Some results we achieved 
with this prototype are presented in Section 6, and our 
conclusions are discussed in Section 7. 

2. Background 
To explain the genesis of the concept of procedural 

natural systems, we describe how level design is 
currently being done (Subsection 2.1), what can be 
achieved with procedural techniques (Subsection 2.2), 
and finally how natural phenomena can be structured 
and classified (Subsection 2.3). 

2.1 Current game level design 
Over the last decade, the importance of level design 

has grown significantly. It combines inputs from most 
departments of a game development studio, and 
because of this central role it is a potential bottleneck 
within the overall process. 

The most serious weakness of current level design 
practices is that it is very labor intensive. A lot of time 
is spent on low-level operations like dragging vertices, 
applying textures the right way, and adding decoration 
objects one by one. Because these operations are so 
low level, making changes to previous design work is 
also very time consuming. As a result, changing 'early 
stage choices' later on in the process should be avoided 
at all costs, making the process of level design rigid 
and very linear. 

We can illustrate these problems with the example 
of creating a river in current level editing tools. 
Roughly, the following steps are involved: 

• Carve out the river using simple tools that change 
the height of a terrain until we get the shape of 
the river. In some modern level editing tools we 
get a curve-based height modification tool to 
somewhat ease this process; 

• Manually paint soil colors (textures) on the river 
and riverbed to ensure that the right colors are 
displayed to represent the type of river we want; 

• Add individual objects (such as trees and bushes) 
to get the vegetation we need; 

• Since we are modeling a river, we also need to 
add something to represent the water level, which 
is usually following the shape of the river. In 
some modern level editing, we can use for this 
the same curve-based tool as above. 

When a change needs to be made to the shape of the 
river, e.g. as a result of game-play considerations, 
many of these operations will have to be undone and 
redone manually. 

The general consensus is that, in order to keep up 
with the increasing amount of work that has to be done, 
the future of level design holds two possibilities. The 
first one [Byrne 2009] is super specialization where, 
for example, a single person is highly specialized in 
adding grass and small plants to a level. This approach 
increases the overall productivity, but makes level 
design a very repetitive task. It also suffers from the 
law of diminishing returns due to management 
overhead, and does not really solve the flexibility 
problem. 

The second possibility [de Jong 2009] is that better 
tools are developed, allowing the designer to work 
more efficiently. This can be done using procedural 
content creation. In this approach, level designers are 
still in charge of the design of the level, but let the 
computer do the heavy lifting. Here Moore’s law is 
actually working to our advantage: since computers 
become faster, they can do a lot more construction 
based on a design automatically than before. Since the 
problem (higher demands) and solution (automation) 
grow at the same pace, procedural content creation 
poses a far more scalable solution than super-
specialization. 

2.2 Procedural content generation 
Procedural content generation has been an active 

research topic for over thirty years, resulting in high-
quality models and procedures for specific terrain 
features, such as landscapes [Miller 1986, Musgrave 
1993], plant models [Prusinkiewicz and Lindenmayer 
1990] and vegetation distribution [Deussen et al. 
1998], road networks [Sun et al. 2002], urban 
environments [Parish and Müller 2001], and building 
facades [Wonka et al. 2003, Müller et al. 2006, 
Finkenzeller 2008]. The reader is referred to the recent 
survey [Smelik et al. 2009] for a more detailed analysis 
of the pros and cons of these techniques, as well as for 
current trends and further developments in the area. 

Procedural content generation has found its way in a 
variety of commercial products, which in turn are 
being profitably used in the game industry for specific 
purposes. Examples of these are the procedural 
generation of textures [Allegorithmic 2010], and of 
trees and other types of vegetation, e.g. [Speedtree 
2010] and [Xfrog 2010]. Xfrog allows you to 
procedurally generate a model of a tree by designing an 
abstract version of the tree with some simple 
parameters. Yet other tools have been proposed that 
generate either specific types of virtual worlds, such as 
GeoControl for terrains [Rosenberg 2010] and City 
Engine for cities [CityEngine 2010], or fully-integrated 
virtual worlds, such as SketchaWorld [SketchaWorld 
2010]. GeoControl is an example of a tool that allows 
the user to generate very detailed terrain shapes based 
on all sorts of geological settings and parameters. 

To underpin our design choices, we derived a set of 
guidelines for designing procedural tools, which we 
can illustrate based on two of the tools mentioned 



above: GeoControl and Xfrog. 
Since GeoControl generates very detailed results, it 

becomes very slow to probe the influence of different 
input settings. This makes it hard to interpret what 
certain inputs and settings do, as it simply takes too 
long to play around with the different input values. 
Xfrog has a more interactive interface, where a change 
in the input is reflected rather quickly in the output. 
This allows the user to play around with the settings to 
get the desired results. This playing around with 
settings and possibilities is paramount to creativity. 
Our first guideline for a procedural content generation 
tool is therefore that it should be real-time or, at least, 
close enough to be interactive in changing the settings. 

Another desirable aspect of a procedural content 
generation tool is that the settings are not too abstract. 
Artists and designers are usually not biologists or 
physicists. Therefore we need to make sure that there is 
some logical mapping between the input and output, 
which the artists and designers can intuitively 
understand. GeoControl has a lot of detailed settings 
for creating realistic erosion and other real-world 
effects, Xfrog provides a more abstract set of inputs, 
but with a closer mapping to the end-result, i.e. a good 
visual correspondence between the input and the 
output. 

Since design is a creative process, designers should 
have full control over what they create. When using a 
procedure to automate construction of the content, it is 
highly unlikely that this process at once produces the 
end-result exactly as envisioned by the designer: as we 
reduce the input to a few parameters, we typically give 
away some control over output details. Manual 
tweaking of the output can be used to overcome this 
issue without over-complicating the procedure itself. 
However, it is very desirable that manual tweaking and 
changing the input set can occur intermixed, in any 
order, e.g. changing the construction after some 
manual tweaking has already taken place. Simply 
generating the content once before allowing manual 
tweaking will not be good enough. Neither Xfrog nor 
GeoControl provide such intermixed editing features. 

2.3 Earth sciences 
Since our aim is to 'artificially generate natural 

phenomena', we now take a quick look at the science 
behind actual natural phenomena, without going into 
detail. 

In earth sciences, many natural phenomena are 
classified according to certain properties. These 
classifications and groupings of natural phenomena 
allow us so have a structured view on nature, which we 
can use to create the abstractions necessary for our 
procedural natural systems. 

Two relevant classifications are biomes and 
landforms. Biomes are a classification of natural 
systems based on similarities in vegetation, climate and 
location (e.g. tundra, tropical, grassland). In practice 
this means that the same type of plants, animals and 

soil organisms are present. Since these factors are 
mostly related to both color and aspect of small 
objects, biomes largely determine the appearance of a 
certain natural phenomenon. 

Landforms are categorized by characteristic physical 
attributes such as elevation, slope, orientation, 
stratification and rock exposure. Since these properties 
relate mostly to the height and form of a terrain, we 
can largely interpret this classification as describing the 
shape of natural phenomena (e.g. mountains, gullies). 

The interesting feature about these two 
classifications is that they are able to break down 
complex natural phenomena into independent and easy 
to understand concepts. By combining the appearance 
description with the shape description, we should be 
able to fully describe a natural phenomenon. 

3. The concept of natural systems 
As with biomes and landforms, natural systems 

separate the appearance of natural phenomena from the 
kind of shape they have in the world. With procedural 
content creation, we separate the design of content 
from its construction. If we apply this to natural 
systems, we can observe that the appearance and shape 
together represent the design of a natural phenomenon. 
By procedurally combining the appearance and shape, 
we can create an instance of that natural phenomenon. 
This activity represents the construction part. 

The appearance of a natural system is captured by 
the footprint, which describes the “cross section” of a 
natural system. The shape of a natural system can be 
either a fat curve or a freeform area. Footprint and 
shape are procedurally combined to create each natural 
system instance in the game world. This relationship is 
shown in Fig. 1. A major advantage of the concept of 
natural systems is that the appearance of natural 
phenomena becomes a reusable component to create 
multiple (different) instances. 

 

3.1 Footprint 
In current level design practices, creating natural 

phenomena involves changing the height of the terrain, 
the texture that is applied to the terrain, and the 3D 
(vegetation) models that are added to the game world. 
In our approach, environmental features are used to 
describe how these aspects are defined in the footprint, 

Fig. 1. A natural system consists of a footprint and a shape 
which are combined using a procedure to create an instance.
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i.e. the “cross section” of a natural system. An example 
of a natural system footprint is shown in Fig. 2. 

We have identified four kinds of environmental 
features: 

• the height feature indicates how the height of the 
terrain is modified by a natural system. 
Depending on the landform we want to replicate, 
we can raise or lower the terrain to, for example, 
model a ridge or canyon; 

• the soil features indicate how the surface of a 
natural system looks like. Depending on the 
biome we are trying to replicate, this can, for 
example, be rock, moss, mud or sand. Soil 
features essentially influence the texture that is 
placed on the terrain; 

• the vegetation features indicate which kind of 
vegetation grows where in a natural system and 
how this flora is distributed. Natural systems 
belonging to a forest biome will contain various 
vegetation features, ranging from large trees to 
smaller shrubs, due to the large biodiversity of 
these biomes; 

• the water height feature indicates which height 
the level of water has for that natural system. This 
feature is of practical use only for natural systems 
that belong to a freshwater biome. 

3.2 Shapes 
When we look at a river and a lake, we see that a 

river can be described by something that looks like a 
curve, but that for a lake it is more appropriate to use a 
closed shape that describes its area. From a reusability 
perspective, it is desired that both shapes are 
interchangeable with one another. It should, for 
example, be possible to apply the same footprint of a 
stream to both a curve and an area. The former should 
result in a river, the latter in a lake. Furthermore, in 
some cases, the width of a natural system changes 
along the shape: a river has sections where it is broader 
or narrower. This means that a shape should also 
contain a width that determines over which range the 
footprint is applied. These requirements lead to the 
following shape definitions.  

A fat curve is defined as the trace left by a moving 
circle of variable radius along a curve [Mestetskii 
2000]. In our case, a fat curve consists of a number of 
connected control points, with each of these control 
points also having a width value that corresponds to the 
radius of the tracing circle at that point. The curve 
running through the control points is called the base 

curve of the shape. Because the width of the fat curve 
is only defined at its control points, the width at 
locations between two control points is defined by 
interpolating their width values. Examples of 
landforms that can be described with a fat curve are: 
rivers, glaciers, valleys, canyons, atolls and dunes. 

We define an area as the trace left by a moving 
circle of variable radius along a closed curve. As with 
the fat curve, the area shape also consists of a sequence 
of connected control points, in which the last control 
point is connected to the first. The curve running 
through these control points is the base curve of this 
shape. The area enclosed by the base curve defines the 
inside of the area. As with the fat curve, each control 
point also has a width that corresponds to the radius of 
the tracing circle at that point. The difference between 
a fat curve and an area is that for the area shape only 
the outside of the trace is used. The reason for this is 
that for creating a natural system instance with an area 
shape, only half of the natural system footprint is used, 
as will be explained in Section 3.3. Examples of 
landforms that are defined by an area are: lakes, 
mountains, buttes and hills. 

3.3 Combining footprint and shape 
The approach for combining a footprint with the two 

shapes is basically by “sweeping” the footprint along 
the shape. As previously stated, it is desired that we are 
able to apply the same footprint to both types of 
shapes, without changing anything to the footprint. In 
this subsection, we will describe how the footprint 
shown in Fig. 2 is combined with a fat curve and an 
area shape.  

To instantiate a natural system from a footprint and 
a fat curve, the footprint is swept along the base curve 
in a single direction; see Fig. 3. Conceptually, this 
means that a copy of the footprint is positioned at each 
control point of the base curve, perpendicular to the 
direction. To make sure the sides of the footprint are 
placed at the sides of the fat curve, the footprint is 
scaled to match the local width of the fat curve. After 
this, the environmental features of the footprint are 
used to instantiate a natural system. For the terrain 

Inside 

Fig. 3. “Sweeping” the footprint of a stream along a fat curve 
(left) and an area shape (right). 
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Fig. 2. Example of a natural system footprint. 



height feature, the sweeping operation results in a 
terrain along the fat curve that has the same height 
profile as the footprint. Sweeping the soil features 
works in much the same way; for example, the mud 
and grass texture are placed on the terrain that lies 
along the fat curve. Because the footprint is aligned 
with the width of the fat curve, the mud texture will be 
centered along the base curve. Further from it, towards 
the sides, the grass texture will be increasingly more 
visible, as defined by the soil features of the footprint. 
To evaluate where vegetation models need to be placed 
in the game world, while sweeping vegetation features, 
a distribution of points is used. For each of these points 
that lie along the fat curve, it is evaluated whether a 
vegetation feature dictates that vegetation grows at that 
part of the footprint. If it does, the procedure places the 
appropriate vegetation model at that location on the 
terrain in the game world. To avoid a very grid like 
distribution of the vegetation, pseudo-random offsets 
can be introduced. The water level height feature is 
represented by a (flat) water surface model in the game 
world. 

Combining a footprint with an area shape is done in 
a similar way as combining a footprint with a fat curve. 
The only difference is that, for an area shape, only half 
the footprint is used. By sweeping half the footprint of 
the natural system along the area shape, only the outer 
area is changed (the area between the outer border of 
the area and the base curve). The inside area of the 
shape is defined by extrapolating the environmental 
feature values at the middle of the footprint. In the case 
of the stream footprint, the terrain height at the inside 
of the area is equal to the terrain height defined at the 
middle of the footprint. Furthermore, the inside area is 
completely covered by the mud texture and aquatic 
plants. The water surface model is extended to cover 
the entire inside of the area. 

4. Natural systems put to work 
To design the appearance of a natural system, the 

user describes the footprint of the natural system using 
the four kinds of environmental features mentioned 
above. This footprint can then be applied to a shape to 
create an instance of the natural system in the game 
world. While designing the approach for working with 
natural systems, we kept two aspects in mind. First of 
all, editing environmental features should be intuitive. 
This means that the user should have a clear 
understanding of what he is editing and how this adds 
to the final result. Secondly, the system should provide 
enough flexibility for the user to design a broad range 
of different natural phenomena. 

4.1 Editing the footprint 
Fig. 4 shows how a footprint is defined by 

combining the different environmental features. The 
top of the figure shows the height and water features. 
As one can see, the height feature is determined by a 
number of control points. The height of each control 

point indicates the terrain height at that point. The 
water height feature indicates the height of the water 
for this natural system.  

At the bottom of the figure, one can see the 
definition of the soil features, indicating which kind of 
texture is placed on the terrain. Soil features use the 
same curve-like editing as the height feature, but in this 
case the height of a control point represents the alpha 
value of the texture. Alpha blending or compositing is 
used to combine soil features, in a proportion 
determined by their alpha values. The lowest soil 
feature represents a mud layer, which is visible over 
the entire footprint. On top of the mud soil feature, a 
grass soil feature is defined. In the middle, the 
vegetation features are shown. For the footprint of the 
river, three vegetation features are used: trees, tall 
grass and aquatic plants. For vegetation features, the 
height of the control points indicates the vegetation 
density. An area with a higher density means that more 
vegetation is placed there. 

4.2 Designing the shape 
To design the shape of a natural system, the user is 

able to move around the control points of the shape, 
change the width of a control point, and add/remove 
control points to and from the shape. A major goal for 
designing the user interaction model for shape editing 
was that a user should be able to make changes to a 
shape in a fast and intuitive way, enabling him to 
quickly try out different configurations and rapidly 
work towards the shape that looks best. In order to 
facilitate this kind of behavior, all editing operations 
are performed directly on the shape and visualized at 
once. 

4.3 Shape features 
A shortcoming of the approach described so far is 

that the footprint will be exactly the same along the 
entire natural system. This is obviously not desired, as 
it does not capture, for example, the “natural” flow of a 
river. In the real world, cross sections of a river are 

Water  
height  
feature 

Height  
feature

Vegetation 
features 

Soil  
features 

Fig. 4. Example of how environmental features describe 
the footprint of a natural system. 



different under different situations. For example, 
depending on the width of the river, the river bank 
might be steeper. Furthermore, when the river bends, 
its cross section is typically not symmetrical. To 
overcome this, we introduced shape features. Shape 
features describe a shape in terms of its local width, 
curvature and slope. By allowing the user to define 
different variants of the footprint for different shape 
feature values, we can conceptually position a different 
variant of the footprint at different positions along the 
shape, depending on its shape features, and in this way 
create a much richer description of the appearance of a 
natural system. Fig. 5 illustrates this. The footprint at 
the top describes the river at locations with zero 
curvature (where the river runs along a straight line). 
The footprint below describes the river when it sharply 
bends to the right. By mirroring the footprint 
horizontally, we obtain the footprint for the river when 
it bends to the left. To obtain the footprint at 
intermediate curvature values, the values of the 
environmental features can be linearly blended. 
 

4.4 Terrain layers 
The final point of attention is that the users should 

be able to further edit the game world after an area has 
been created using natural systems; natural systems 
should be available as an integrated part of level 
editing. An approach for this is to allow the user to 
freely mix editing the game world using natural 
systems and manual editing. Furthermore, it is 
undesired that a natural system overwrites manual edits 
made earlier. For example, when the shape of a river is 

changed, the area where the river previously ran should 
be restored to its original content. Our solution to this 
challenge is to edit the game world using layers. Each 
layer contains its own information regarding the height 
of the terrain, the texture that is placed on the terrain, 
and the vegetation models that are placed in the game 
world. 

To get the final result, all layers are combined from 
bottom to top. Because each layer contains its own 
information, changes to a layer never change or 
overwrite the information stored in other layers. 
Because the process of combining terrain layers is 
independent of the actual content of the layers, this 
concept enables us to freely combine different ways of 
editing the game world. Terrain layers thus enable a 
user to combine natural systems and manual editing 
with each other. This allows him to, for example, make 
small changes to the natural system after it has been 
procedurally generated. An example of how two layers 
are combined using an add operation is shown in Fig. 
6. Other operations, like subtract, min, max and 
average can also be used for the ways layers are 
combined. 

4.5 Procedural generation of a natural system 
The prototype system we developed allows the user 

to apply a natural system footprint to a fat curve. In 
this process, a procedure combines the information of 
the fat curve with the footprint to embed the natural 

Fig. 6. Example of how the terrain height of two terrain 
layers is combined using an add operation. 
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Fig. 7. Diagram (top) of the procedure in which the natural 
system footprint is combined with the fat curve. At the 
bottom the terrain height, terrain color and vegetation grids 
are shown. 
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Fig. 5. Two footprints for a river, defined for straight river 
segments (top) and for river segments bending to the right 
(bottom). 



system instance in the game world. The steps of this 
procedure are shown in Fig. 7. The procedure for 
combining an area with a footprint is similar. 

In short, the steps involved are the following: 
1. The first step is to create a discrete mesh 

representation of the fat curve, which makes 
performing calculations on the fat curve a lot 
easier. The discrete mesh representation is 
created by evaluating each segment of the fat 
curve at a number of points and by connecting 
these points. Fig. 8 shows an example of a 
single discrete curve segment. 

2. For the terrain height, terrain color and 
vegetation, three different grids are used. These 
grids are shown at the bottom of Fig. 7. The 
terrain height and color grids have resolution 1 
and 8 samples per world unit, respectively. For 
the vegetation grid, a resolution of 2 samples 
per world unit is used. To create a more random 
effect, the vegetation grid points are given a 
pseudo random offset. For all grid points, we 
determine whether they are inside the area 
defined by the discrete mesh representation of 
the fat curve. 

3. For each of the inside grid points, we evaluate 
the normalized distance of the point along the 
width of the fat curve. This represents the 
normalized position of the point on the footprint 
of the natural system. To evaluate the 
normalized distance, we use barycentric 
coordinates [Weisstein 2010]. To calculate the 
normalized distance, we first assign the 
normalized distance value of 0 to all vertices on 
one side of the curve and value 1 to vertices on 
the opposite side. How this works is shown in 
Fig. 9. To calculate the normalized distance at 
point p, we multiply the barycentric coordinates 
of p in the triangle defined by A, B and C with 
the normalized distance values of each of these 
vertices (A = 1, B = 0, C = 1). Calculating the 
shape features width, curvature and slope at 
each grid point is done in a similar way. 

4. Once the shape features and normalized 
distance are known, they can be used to sample 
the natural system footprint for terrain height, 
terrain color, water height and vegetation 

density. In this step, the different variants of a 
footprint are blended to obtain the footprint at 
the desired shape feature value. 

5. With the footprint information obtained above, 
the actual instance of the natural system is 
created. This activity involves: 
a) Applying the height and color information to 

the terrain visualization. 
b) Placing a water surface in the model of the 

game world. 
a) Placing the appropriate vegetation models at 

the right position in the game world. 

5. Implementation 
To demonstrate the feasibility and advantages of 

natural systems, a prototype has been developed. The 
goal of the prototype is primarily to show that the 
concept of natural systems has the potential to work as 
a useful extension to current level design practices. 
During the development of the prototype, we tried to 
adhere to the guidelines presented in Subsection 2.2 as 
much as possible. 

The first guideline states that the application should 
be real-time. Even though our procedure, for 
simplicity, has been implemented entirely on the CPU, 
it is able to update the instance of a natural system at 
an interactive rate on current mid-end computer 
hardware. The prototype also offers a clear mapping 
between the provided input and the procedurally 
generated output. The main reason for this is that while 
editing the footprint and shape, the user is interacting 
with a representation that is close to the end result. 
Finally, we allow the user to manually tweak the end 
result by combining procedural with manual editing by 
using the layer system. 

Our prototype has been developed using Cannibal 
Composer, which is a proprietary editor framework. 
For visualization purposes, the Cannibal Engine has 
been used. Both products have been developed in-
house by Cannibal Game Studios. Together, Cannibal 
Composer and the Cannibal Engine offer a lot of 
standard editor and visualization functionality that 
makes the development of a prototype level editor a lot 
easier. 
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Fig. 10. Variants of a meander footprint for three width and 
three curvature values.
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6. Results 
We now describe the process of creating a meander 

using nothing but natural systems, with the main goal 
of showing the ease with which something like a 
meander can be created in a fraction of the time it takes 
compared to achieving the same result manually.  

With any natural system, the first step in this process 
is to design the footprint using the environmental 
features. Fig. 10 shows a screenshot of the footprint 
user interface. Designing the six footprint variants 
shown in Fig. 10 takes less than 15 minutes for a 
novice user. 

After the design of the footprint, the shape of the 
natural system needs to be designed in the game world. 

This generally takes only a few minutes. Once the 
shape is finished, the footprint can be applied to the 
shape, after which the procedure can create an instance 
of the natural system in the game world. Fig. 11 shows 
the shape of the natural system and different steps of 
the generation procedure. 

A major benefit of a natural system is that both its 
footprint and its shape can be freely and independently 
edited after they have been combined. The procedure 
that generates the natural system instance makes sure 
that any changes are immediately shown in the game 
world. Whereas designers need to redo a lot of work by 
hand in traditional level editors, with natural systems 
they are able to change large parts of the game world in 
a very simple and intuitive way. Changing, for 
example, the number of bends of the meander, as 

   
 (a)  (b)  

   
 (c) (d) 

Fig. 11. Creating a meander using natural systems: (a) designing the shape in the game world; (b) applying the height and 
soil features; (c) applying the water height feature; (d) applying the vegetation features. 

   
 (a)  (b) 

Fig. 12. Editing the shape of a meander: (a) before and (b) after. 



shown in Fig. 12, takes only a few minutes. Depending 
on the complexity of the scene, manual editing might 
take a couple of hours. 

In a similar way, other types of natural systems can 
be quickly specified and created following this 
approach. Fig. 13 depicts the definition for the 
environmental features of a butte, an eroded steep rock 
formation, and a recently dried out creek, consisting of 
a shallow groove with a muddy creek bed where some 
vegetation still grows. Fig. 14 shows two images of 
one such dried out creek, surrounded by a few buttes, 
both specified as natural systems. 

7. Conclusions 
Procedural methods are becoming more and more 

attractive to solve the increasing size and complexity 
of next-gen game levels. However, much research is 
required before these techniques can offer intuitive 
control parameters, provide powerful editing and 
visualization facilities of their results, and all this 
operated in real-time. In this paper we have introduced 
natural systems, a novel procedural approach to assist 
level designers in creating large-scale natural 
phenomena, e.g. rivers, canyons and ridges. The main 
feature of the natural system concept is the separation 
of the shape of a natural phenomenon (e.g. the 
trajectory of a river) from its footprint (e.g. the 
appearance of the river bed and banks). For each 
natural system instance desired in the virtual world, the 
designer interactively specifies its shape and its 
footprint, which are then combined by a procedure.  

Our approach presents two main advantages: (i) it 
significantly reduces the time needed to generate 
complete natural systems, and (ii) it greatly increases 
the ease of editing the natural system's properties and 
attributes at any time throughout the design process. 
These advantages mainly arise from the fact that 
designers are given facilities to separately specify and 
edit the footprint and the shape of a natural system, 
which become therefore very convenient reusable 
components. As such, natural systems provide a solid 
foundation for intuitive, flexible and efficient 
procedural generation of significant portions of a game 
level. 
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