
Procedural Natural Systems for Game Level Design

 Remco Huijser Jeroen Dobbe Willem F. Bronsvoort * Rafael Bidarra

 Cannibal Game Studios Delft University of Technology
 2629 JD Delft, The Netherlands 2628 CD Delft, The Netherlands

Abstract

Due to the increase in magnitude and level of detail of
next-gen games, the time required to manually design a
game level has increased dramatically. This paper
introduces procedural natural systems, a novel
approach aimed at reducing the time needed to design
large-scale natural phenomena for game levels. The
concept of natural systems separates the shape of a
natural phenomenon from its footprint, allowing a
designer to edit either of them separately. Various
procedural techniques are used to combine the shape
and footprint of a natural system, as well as to tweak
these in real-time in a game world. We conclude that
natural systems provide a solid foundation for intuitive,
flexible and efficient procedural generation of
significant portions of a game level.

Keywords: procedural content generation, natural
systems, game level design

Authors’ contact:
R.Huijser|J.Dobbe@cannibalgamestudios.com
W.F.Bronsvoort|R.Bidarra@tudelft.nl
*corresponding author: tel. +31 15 278 4564

1. Introduction

As predicted by Moore [1965], computational
performance has roughly doubled every two years,
each new generation of computer hardware opening
doors to endless new possibilities. Likewise, new
generations of game hardware, often referred to as
next-gen, have enabled game developers to create
games that are more realistic and immersive than ever
before. Along with this increase in possibilities,
customer expectations and demands have also
increased, forcing game developers to deliver whatever
becomes technically possible.

Although technological growth has been
exponential, game content production efficiency has
not grown at an equal pace. Most digital content, even
today, is created manually. With ever more detailed
game content, the time and money it takes to develop
games has increased dramatically.

One of the most promising ways for game
developers to cope with this problem is to increase the
efficiency of content creation. This can be achieved by
automating the content creation process as much as
possible, reducing the amount of work done manually.
Here, a prominent role is reserved for procedural
content generation methods. Although these methods
have already been successfully applied to create
specific game content, the design of large-scale natural
phenomena like rivers and mountains ridges is still far
from optimal. The main reason for this is that editing
natural phenomena often involves changing many
different aspects of the game world, e.g. the height and
texture of the terrain and the 3D models that populate
the world. Because these modifications still often have
to be done manually, this makes designing natural
phenomena a very tedious activity, and making
changes afterwards a prohibitive practice.

Basically, current procedural techniques developed
for level design fall short in a number of areas. In
Section 2 we take a look at the current state of tools for
level design and procedural content creation methods.

To address the current issues, and allow for large
natural phenomena to be placed and modified in a
game level, we propose procedural natural systems: an
approach to assist designers in creating large natural
phenomena. A natural system consists of a footprint
that contains the ‘appearance’, a shape that controls the
placement, and a procedure that combines the footprint
and shape to generate an instance of the natural system

in the game world.
The principal contribution of our work lies in the

flexibility of this separation of footprint and shape, in
their efficient reusability, and in the intuitivity of
supporting intermixed manual tweaks in real-time.

The main concepts of procedural natural systems are
described in more detail in Section 3. In Sections 4 and
5 we show how we put this concept to practical use in
a prototype level design tool. Some results we achieved
with this prototype are presented in Section 6, and our
conclusions are discussed in Section 7.

2. Background
To explain the genesis of the concept of procedural

natural systems, we describe how level design is
currently being done (Subsection 2.1), what can be
achieved with procedural techniques (Subsection 2.2),
and finally how natural phenomena can be structured
and classified (Subsection 2.3).

2.1 Current game level design
Over the last decade, the importance of level design

has grown significantly. It combines inputs from most
departments of a game development studio, and
because of this central role it is a potential bottleneck
within the overall process.

The most serious weakness of current level design
practices is that it is very labor intensive. A lot of time
is spent on low-level operations like dragging vertices,
applying textures the right way, and adding decoration
objects one by one. Because these operations are so
low level, making changes to previous design work is
also very time consuming. As a result, changing 'early
stage choices' later on in the process should be avoided
at all costs, making the process of level design rigid
and very linear.

We can illustrate these problems with the example
of creating a river in current level editing tools.
Roughly, the following steps are involved:

• Carve out the river using simple tools that change
the height of a terrain until we get the shape of
the river. In some modern level editing tools we
get a curve-based height modification tool to
somewhat ease this process;

• Manually paint soil colors (textures) on the river
and riverbed to ensure that the right colors are
displayed to represent the type of river we want;

• Add individual objects (such as trees and bushes)
to get the vegetation we need;

• Since we are modeling a river, we also need to
add something to represent the water level, which
is usually following the shape of the river. In
some modern level editing, we can use for this
the same curve-based tool as above.

When a change needs to be made to the shape of the
river, e.g. as a result of game-play considerations,
many of these operations will have to be undone and
redone manually.

The general consensus is that, in order to keep up
with the increasing amount of work that has to be done,
the future of level design holds two possibilities. The
first one [Byrne 2009] is super specialization where,
for example, a single person is highly specialized in
adding grass and small plants to a level. This approach
increases the overall productivity, but makes level
design a very repetitive task. It also suffers from the
law of diminishing returns due to management
overhead, and does not really solve the flexibility
problem.

The second possibility [de Jong 2009] is that better
tools are developed, allowing the designer to work
more efficiently. This can be done using procedural
content creation. In this approach, level designers are
still in charge of the design of the level, but let the
computer do the heavy lifting. Here Moore’s law is
actually working to our advantage: since computers
become faster, they can do a lot more construction
based on a design automatically than before. Since the
problem (higher demands) and solution (automation)
grow at the same pace, procedural content creation
poses a far more scalable solution than super-
specialization.

2.2 Procedural content generation
Procedural content generation has been an active

research topic for over thirty years, resulting in high-
quality models and procedures for specific terrain
features, such as landscapes [Miller 1986, Musgrave
1993], plant models [Prusinkiewicz and Lindenmayer
1990] and vegetation distribution [Deussen et al.
1998], road networks [Sun et al. 2002], urban
environments [Parish and Müller 2001], and building
facades [Wonka et al. 2003, Müller et al. 2006,
Finkenzeller 2008]. The reader is referred to the recent
survey [Smelik et al. 2009] for a more detailed analysis
of the pros and cons of these techniques, as well as for
current trends and further developments in the area.

Procedural content generation has found its way in a
variety of commercial products, which in turn are
being profitably used in the game industry for specific
purposes. Examples of these are the procedural
generation of textures [Allegorithmic 2010], and of
trees and other types of vegetation, e.g. [Speedtree
2010] and [Xfrog 2010]. Xfrog allows you to
procedurally generate a model of a tree by designing an
abstract version of the tree with some simple
parameters. Yet other tools have been proposed that
generate either specific types of virtual worlds, such as
GeoControl for terrains [Rosenberg 2010] and City
Engine for cities [CityEngine 2010], or fully-integrated
virtual worlds, such as SketchaWorld [SketchaWorld
2010]. GeoControl is an example of a tool that allows
the user to generate very detailed terrain shapes based
on all sorts of geological settings and parameters.

To underpin our design choices, we derived a set of
guidelines for designing procedural tools, which we
can illustrate based on two of the tools mentioned

above: GeoControl and Xfrog.
Since GeoControl generates very detailed results, it

becomes very slow to probe the influence of different
input settings. This makes it hard to interpret what
certain inputs and settings do, as it simply takes too
long to play around with the different input values.
Xfrog has a more interactive interface, where a change
in the input is reflected rather quickly in the output.
This allows the user to play around with the settings to
get the desired results. This playing around with
settings and possibilities is paramount to creativity.
Our first guideline for a procedural content generation
tool is therefore that it should be real-time or, at least,
close enough to be interactive in changing the settings.

Another desirable aspect of a procedural content
generation tool is that the settings are not too abstract.
Artists and designers are usually not biologists or
physicists. Therefore we need to make sure that there is
some logical mapping between the input and output,
which the artists and designers can intuitively
understand. GeoControl has a lot of detailed settings
for creating realistic erosion and other real-world
effects, Xfrog provides a more abstract set of inputs,
but with a closer mapping to the end-result, i.e. a good
visual correspondence between the input and the
output.

Since design is a creative process, designers should
have full control over what they create. When using a
procedure to automate construction of the content, it is
highly unlikely that this process at once produces the
end-result exactly as envisioned by the designer: as we
reduce the input to a few parameters, we typically give
away some control over output details. Manual
tweaking of the output can be used to overcome this
issue without over-complicating the procedure itself.
However, it is very desirable that manual tweaking and
changing the input set can occur intermixed, in any
order, e.g. changing the construction after some
manual tweaking has already taken place. Simply
generating the content once before allowing manual
tweaking will not be good enough. Neither Xfrog nor
GeoControl provide such intermixed editing features.

2.3 Earth sciences
Since our aim is to 'artificially generate natural

phenomena', we now take a quick look at the science
behind actual natural phenomena, without going into
detail.

In earth sciences, many natural phenomena are
classified according to certain properties. These
classifications and groupings of natural phenomena
allow us so have a structured view on nature, which we
can use to create the abstractions necessary for our
procedural natural systems.

Two relevant classifications are biomes and
landforms. Biomes are a classification of natural
systems based on similarities in vegetation, climate and
location (e.g. tundra, tropical, grassland). In practice
this means that the same type of plants, animals and

soil organisms are present. Since these factors are
mostly related to both color and aspect of small
objects, biomes largely determine the appearance of a
certain natural phenomenon.

Landforms are categorized by characteristic physical
attributes such as elevation, slope, orientation,
stratification and rock exposure. Since these properties
relate mostly to the height and form of a terrain, we
can largely interpret this classification as describing the
shape of natural phenomena (e.g. mountains, gullies).

The interesting feature about these two
classifications is that they are able to break down
complex natural phenomena into independent and easy
to understand concepts. By combining the appearance
description with the shape description, we should be
able to fully describe a natural phenomenon.

3. The concept of natural systems
As with biomes and landforms, natural systems

separate the appearance of natural phenomena from the
kind of shape they have in the world. With procedural
content creation, we separate the design of content
from its construction. If we apply this to natural
systems, we can observe that the appearance and shape
together represent the design of a natural phenomenon.
By procedurally combining the appearance and shape,
we can create an instance of that natural phenomenon.
This activity represents the construction part.

The appearance of a natural system is captured by
the footprint, which describes the “cross section” of a
natural system. The shape of a natural system can be
either a fat curve or a freeform area. Footprint and
shape are procedurally combined to create each natural
system instance in the game world. This relationship is
shown in Fig. 1. A major advantage of the concept of
natural systems is that the appearance of natural
phenomena becomes a reusable component to create
multiple (different) instances.

3.1 Footprint
In current level design practices, creating natural

phenomena involves changing the height of the terrain,
the texture that is applied to the terrain, and the 3D
(vegetation) models that are added to the game world.
In our approach, environmental features are used to
describe how these aspects are defined in the footprint,

Fig. 1. A natural system consists of a footprint and a shape
which are combined using a procedure to create an instance.

Footprint Shape

Procedure

Natural System
Instance

i.e. the “cross section” of a natural system. An example
of a natural system footprint is shown in Fig. 2.

We have identified four kinds of environmental
features:

• the height feature indicates how the height of the
terrain is modified by a natural system.
Depending on the landform we want to replicate,
we can raise or lower the terrain to, for example,
model a ridge or canyon;

• the soil features indicate how the surface of a
natural system looks like. Depending on the
biome we are trying to replicate, this can, for
example, be rock, moss, mud or sand. Soil
features essentially influence the texture that is
placed on the terrain;

• the vegetation features indicate which kind of
vegetation grows where in a natural system and
how this flora is distributed. Natural systems
belonging to a forest biome will contain various
vegetation features, ranging from large trees to
smaller shrubs, due to the large biodiversity of
these biomes;

• the water height feature indicates which height
the level of water has for that natural system. This
feature is of practical use only for natural systems
that belong to a freshwater biome.

3.2 Shapes
When we look at a river and a lake, we see that a

river can be described by something that looks like a
curve, but that for a lake it is more appropriate to use a
closed shape that describes its area. From a reusability
perspective, it is desired that both shapes are
interchangeable with one another. It should, for
example, be possible to apply the same footprint of a
stream to both a curve and an area. The former should
result in a river, the latter in a lake. Furthermore, in
some cases, the width of a natural system changes
along the shape: a river has sections where it is broader
or narrower. This means that a shape should also
contain a width that determines over which range the
footprint is applied. These requirements lead to the
following shape definitions.

A fat curve is defined as the trace left by a moving
circle of variable radius along a curve [Mestetskii
2000]. In our case, a fat curve consists of a number of
connected control points, with each of these control
points also having a width value that corresponds to the
radius of the tracing circle at that point. The curve
running through the control points is called the base

curve of the shape. Because the width of the fat curve
is only defined at its control points, the width at
locations between two control points is defined by
interpolating their width values. Examples of
landforms that can be described with a fat curve are:
rivers, glaciers, valleys, canyons, atolls and dunes.

We define an area as the trace left by a moving
circle of variable radius along a closed curve. As with
the fat curve, the area shape also consists of a sequence
of connected control points, in which the last control
point is connected to the first. The curve running
through these control points is the base curve of this
shape. The area enclosed by the base curve defines the
inside of the area. As with the fat curve, each control
point also has a width that corresponds to the radius of
the tracing circle at that point. The difference between
a fat curve and an area is that for the area shape only
the outside of the trace is used. The reason for this is
that for creating a natural system instance with an area
shape, only half of the natural system footprint is used,
as will be explained in Section 3.3. Examples of
landforms that are defined by an area are: lakes,
mountains, buttes and hills.

3.3 Combining footprint and shape
The approach for combining a footprint with the two

shapes is basically by “sweeping” the footprint along
the shape. As previously stated, it is desired that we are
able to apply the same footprint to both types of
shapes, without changing anything to the footprint. In
this subsection, we will describe how the footprint
shown in Fig. 2 is combined with a fat curve and an
area shape.

To instantiate a natural system from a footprint and
a fat curve, the footprint is swept along the base curve
in a single direction; see Fig. 3. Conceptually, this
means that a copy of the footprint is positioned at each
control point of the base curve, perpendicular to the
direction. To make sure the sides of the footprint are
placed at the sides of the fat curve, the footprint is
scaled to match the local width of the fat curve. After
this, the environmental features of the footprint are
used to instantiate a natural system. For the terrain

Inside

Fig. 3. “Sweeping” the footprint of a stream along a fat curve
(left) and an area shape (right).

Control point

Base curve

Local width

Sweep direction

Fig. 2. Example of a natural system footprint.

height feature, the sweeping operation results in a
terrain along the fat curve that has the same height
profile as the footprint. Sweeping the soil features
works in much the same way; for example, the mud
and grass texture are placed on the terrain that lies
along the fat curve. Because the footprint is aligned
with the width of the fat curve, the mud texture will be
centered along the base curve. Further from it, towards
the sides, the grass texture will be increasingly more
visible, as defined by the soil features of the footprint.
To evaluate where vegetation models need to be placed
in the game world, while sweeping vegetation features,
a distribution of points is used. For each of these points
that lie along the fat curve, it is evaluated whether a
vegetation feature dictates that vegetation grows at that
part of the footprint. If it does, the procedure places the
appropriate vegetation model at that location on the
terrain in the game world. To avoid a very grid like
distribution of the vegetation, pseudo-random offsets
can be introduced. The water level height feature is
represented by a (flat) water surface model in the game
world.

Combining a footprint with an area shape is done in
a similar way as combining a footprint with a fat curve.
The only difference is that, for an area shape, only half
the footprint is used. By sweeping half the footprint of
the natural system along the area shape, only the outer
area is changed (the area between the outer border of
the area and the base curve). The inside area of the
shape is defined by extrapolating the environmental
feature values at the middle of the footprint. In the case
of the stream footprint, the terrain height at the inside
of the area is equal to the terrain height defined at the
middle of the footprint. Furthermore, the inside area is
completely covered by the mud texture and aquatic
plants. The water surface model is extended to cover
the entire inside of the area.

4. Natural systems put to work
To design the appearance of a natural system, the

user describes the footprint of the natural system using
the four kinds of environmental features mentioned
above. This footprint can then be applied to a shape to
create an instance of the natural system in the game
world. While designing the approach for working with
natural systems, we kept two aspects in mind. First of
all, editing environmental features should be intuitive.
This means that the user should have a clear
understanding of what he is editing and how this adds
to the final result. Secondly, the system should provide
enough flexibility for the user to design a broad range
of different natural phenomena.

4.1 Editing the footprint
Fig. 4 shows how a footprint is defined by

combining the different environmental features. The
top of the figure shows the height and water features.
As one can see, the height feature is determined by a
number of control points. The height of each control

point indicates the terrain height at that point. The
water height feature indicates the height of the water
for this natural system.

At the bottom of the figure, one can see the
definition of the soil features, indicating which kind of
texture is placed on the terrain. Soil features use the
same curve-like editing as the height feature, but in this
case the height of a control point represents the alpha
value of the texture. Alpha blending or compositing is
used to combine soil features, in a proportion
determined by their alpha values. The lowest soil
feature represents a mud layer, which is visible over
the entire footprint. On top of the mud soil feature, a
grass soil feature is defined. In the middle, the
vegetation features are shown. For the footprint of the
river, three vegetation features are used: trees, tall
grass and aquatic plants. For vegetation features, the
height of the control points indicates the vegetation
density. An area with a higher density means that more
vegetation is placed there.

4.2 Designing the shape
To design the shape of a natural system, the user is

able to move around the control points of the shape,
change the width of a control point, and add/remove
control points to and from the shape. A major goal for
designing the user interaction model for shape editing
was that a user should be able to make changes to a
shape in a fast and intuitive way, enabling him to
quickly try out different configurations and rapidly
work towards the shape that looks best. In order to
facilitate this kind of behavior, all editing operations
are performed directly on the shape and visualized at
once.

4.3 Shape features
A shortcoming of the approach described so far is

that the footprint will be exactly the same along the
entire natural system. This is obviously not desired, as
it does not capture, for example, the “natural” flow of a
river. In the real world, cross sections of a river are

Water
height
feature

Height
feature

Vegetation
features

Soil
features

Fig. 4. Example of how environmental features describe
the footprint of a natural system.

different under different situations. For example,
depending on the width of the river, the river bank
might be steeper. Furthermore, when the river bends,
its cross section is typically not symmetrical. To
overcome this, we introduced shape features. Shape
features describe a shape in terms of its local width,
curvature and slope. By allowing the user to define
different variants of the footprint for different shape
feature values, we can conceptually position a different
variant of the footprint at different positions along the
shape, depending on its shape features, and in this way
create a much richer description of the appearance of a
natural system. Fig. 5 illustrates this. The footprint at
the top describes the river at locations with zero
curvature (where the river runs along a straight line).
The footprint below describes the river when it sharply
bends to the right. By mirroring the footprint
horizontally, we obtain the footprint for the river when
it bends to the left. To obtain the footprint at
intermediate curvature values, the values of the
environmental features can be linearly blended.

4.4 Terrain layers
The final point of attention is that the users should

be able to further edit the game world after an area has
been created using natural systems; natural systems
should be available as an integrated part of level
editing. An approach for this is to allow the user to
freely mix editing the game world using natural
systems and manual editing. Furthermore, it is
undesired that a natural system overwrites manual edits
made earlier. For example, when the shape of a river is

changed, the area where the river previously ran should
be restored to its original content. Our solution to this
challenge is to edit the game world using layers. Each
layer contains its own information regarding the height
of the terrain, the texture that is placed on the terrain,
and the vegetation models that are placed in the game
world.

To get the final result, all layers are combined from
bottom to top. Because each layer contains its own
information, changes to a layer never change or
overwrite the information stored in other layers.
Because the process of combining terrain layers is
independent of the actual content of the layers, this
concept enables us to freely combine different ways of
editing the game world. Terrain layers thus enable a
user to combine natural systems and manual editing
with each other. This allows him to, for example, make
small changes to the natural system after it has been
procedurally generated. An example of how two layers
are combined using an add operation is shown in Fig.
6. Other operations, like subtract, min, max and
average can also be used for the ways layers are
combined.

4.5 Procedural generation of a natural system
The prototype system we developed allows the user

to apply a natural system footprint to a fat curve. In
this process, a procedure combines the information of
the fat curve with the footprint to embed the natural

Fig. 6. Example of how the terrain height of two terrain
layers is combined using an add operation.

Layer 2

Layer 1
Result

Add

Find Inside
Points

Fat Curve

Fat Curve
Mesh

Create Fat
Curve

Eval. Shape
Features

Sample
Footprint

Footprint

Engine
World

Terrain
Visualisation

 1

Fig. 7. Diagram (top) of the procedure in which the natural
system footprint is combined with the fat curve. At the
bottom the terrain height, terrain color and vegetation grids
are shown.

Color
Grid

Height
Grid

Vegetation
Grid

Color
Grid

Height
Grid

Vegetation
Grid

 2

 3

 4

 5

Fig. 5. Two footprints for a river, defined for straight river
segments (top) and for river segments bending to the right
(bottom).

system instance in the game world. The steps of this
procedure are shown in Fig. 7. The procedure for
combining an area with a footprint is similar.

In short, the steps involved are the following:
1. The first step is to create a discrete mesh

representation of the fat curve, which makes
performing calculations on the fat curve a lot
easier. The discrete mesh representation is
created by evaluating each segment of the fat
curve at a number of points and by connecting
these points. Fig. 8 shows an example of a
single discrete curve segment.

2. For the terrain height, terrain color and
vegetation, three different grids are used. These
grids are shown at the bottom of Fig. 7. The
terrain height and color grids have resolution 1
and 8 samples per world unit, respectively. For
the vegetation grid, a resolution of 2 samples
per world unit is used. To create a more random
effect, the vegetation grid points are given a
pseudo random offset. For all grid points, we
determine whether they are inside the area
defined by the discrete mesh representation of
the fat curve.

3. For each of the inside grid points, we evaluate
the normalized distance of the point along the
width of the fat curve. This represents the
normalized position of the point on the footprint
of the natural system. To evaluate the
normalized distance, we use barycentric
coordinates [Weisstein 2010]. To calculate the
normalized distance, we first assign the
normalized distance value of 0 to all vertices on
one side of the curve and value 1 to vertices on
the opposite side. How this works is shown in
Fig. 9. To calculate the normalized distance at
point p, we multiply the barycentric coordinates
of p in the triangle defined by A, B and C with
the normalized distance values of each of these
vertices (A = 1, B = 0, C = 1). Calculating the
shape features width, curvature and slope at
each grid point is done in a similar way.

4. Once the shape features and normalized
distance are known, they can be used to sample
the natural system footprint for terrain height,
terrain color, water height and vegetation

density. In this step, the different variants of a
footprint are blended to obtain the footprint at
the desired shape feature value.

5. With the footprint information obtained above,
the actual instance of the natural system is
created. This activity involves:
a) Applying the height and color information to

the terrain visualization.
b) Placing a water surface in the model of the

game world.
a) Placing the appropriate vegetation models at

the right position in the game world.

5. Implementation
To demonstrate the feasibility and advantages of

natural systems, a prototype has been developed. The
goal of the prototype is primarily to show that the
concept of natural systems has the potential to work as
a useful extension to current level design practices.
During the development of the prototype, we tried to
adhere to the guidelines presented in Subsection 2.2 as
much as possible.

The first guideline states that the application should
be real-time. Even though our procedure, for
simplicity, has been implemented entirely on the CPU,
it is able to update the instance of a natural system at
an interactive rate on current mid-end computer
hardware. The prototype also offers a clear mapping
between the provided input and the procedurally
generated output. The main reason for this is that while
editing the footprint and shape, the user is interacting
with a representation that is close to the end result.
Finally, we allow the user to manually tweak the end
result by combining procedural with manual editing by
using the layer system.

Our prototype has been developed using Cannibal
Composer, which is a proprietary editor framework.
For visualization purposes, the Cannibal Engine has
been used. Both products have been developed in-
house by Cannibal Game Studios. Together, Cannibal
Composer and the Cannibal Engine offer a lot of
standard editor and visualization functionality that
makes the development of a prototype level editor a lot
easier.

Width Curvature

5 20 50
sharp
bend

Fig. 10. Variants of a meander footprint for three width and
three curvature values.

p

0

1

1

C
A

B

w
x

y

z

p

Fig. 9. Evaluating the
normalized distance and
local shape features for
point p.

Fig. 8. Fat curve
mesh representation

6. Results
We now describe the process of creating a meander

using nothing but natural systems, with the main goal
of showing the ease with which something like a
meander can be created in a fraction of the time it takes
compared to achieving the same result manually.

With any natural system, the first step in this process
is to design the footprint using the environmental
features. Fig. 10 shows a screenshot of the footprint
user interface. Designing the six footprint variants
shown in Fig. 10 takes less than 15 minutes for a
novice user.

After the design of the footprint, the shape of the
natural system needs to be designed in the game world.

This generally takes only a few minutes. Once the
shape is finished, the footprint can be applied to the
shape, after which the procedure can create an instance
of the natural system in the game world. Fig. 11 shows
the shape of the natural system and different steps of
the generation procedure.

A major benefit of a natural system is that both its
footprint and its shape can be freely and independently
edited after they have been combined. The procedure
that generates the natural system instance makes sure
that any changes are immediately shown in the game
world. Whereas designers need to redo a lot of work by
hand in traditional level editors, with natural systems
they are able to change large parts of the game world in
a very simple and intuitive way. Changing, for
example, the number of bends of the meander, as

 (a) (b)

 (c) (d)

Fig. 11. Creating a meander using natural systems: (a) designing the shape in the game world; (b) applying the height and
soil features; (c) applying the water height feature; (d) applying the vegetation features.

 (a) (b)

Fig. 12. Editing the shape of a meander: (a) before and (b) after.

shown in Fig. 12, takes only a few minutes. Depending
on the complexity of the scene, manual editing might
take a couple of hours.

In a similar way, other types of natural systems can
be quickly specified and created following this
approach. Fig. 13 depicts the definition for the
environmental features of a butte, an eroded steep rock
formation, and a recently dried out creek, consisting of
a shallow groove with a muddy creek bed where some
vegetation still grows. Fig. 14 shows two images of
one such dried out creek, surrounded by a few buttes,
both specified as natural systems.

7. Conclusions
Procedural methods are becoming more and more

attractive to solve the increasing size and complexity
of next-gen game levels. However, much research is
required before these techniques can offer intuitive
control parameters, provide powerful editing and
visualization facilities of their results, and all this
operated in real-time. In this paper we have introduced
natural systems, a novel procedural approach to assist
level designers in creating large-scale natural
phenomena, e.g. rivers, canyons and ridges. The main
feature of the natural system concept is the separation
of the shape of a natural phenomenon (e.g. the
trajectory of a river) from its footprint (e.g. the
appearance of the river bed and banks). For each
natural system instance desired in the virtual world, the
designer interactively specifies its shape and its
footprint, which are then combined by a procedure.

Our approach presents two main advantages: (i) it
significantly reduces the time needed to generate
complete natural systems, and (ii) it greatly increases
the ease of editing the natural system's properties and
attributes at any time throughout the design process.
These advantages mainly arise from the fact that
designers are given facilities to separately specify and
edit the footprint and the shape of a natural system,
which become therefore very convenient reusable
components. As such, natural systems provide a solid
foundation for intuitive, flexible and efficient
procedural generation of significant portions of a game
level.

References
ALLEGORITHMIC, 2010. Allegorithmic website. [Online]

www.allegorithmic.com.
BYRNE E., 2009. Game-Artist.net, Interview Ed Byrne.

[Online] www.game-artist.net/forums/vbarticles.php?do=
article&articleid=9.

CITYENGINE, 2010. Procedural Inc., City Engine website.
[Online] www.procedural.com.

DEUSSEN O., HANRAHAN P., LINTERMANN B., MECH R.,
PHARR M., PRUSINKIEWICZ P., 1998. Realistic Modeling
and Rendering of Plant Ecosystems. In: SIGGRAPH ’98:

(a)

(b)

Fig. 13. Environmental features for (a) a butte and (b) a dried
out creek.

Fig. 14. Desert scene containing a few buttes and a dried out creek.

Proceedings of the 25th Annual Conference on Computer
Graphics and Interactive Techniques, ACM, New York,
NY, USA, 1998, pp. 275–286.

FINKENZELLER D., 2008. Detailed Building Facades. IEEE
Computer Graphics and Applications 28(3) (2008) 58–
66.

JONG S. DE, 2009. Game-Artist.net, Interview Sjoerd de Jong.
[Online] www.game-artist.net/forums/spotlight-
articles/1048-interview-level-design-sjoerd-hourences-
de-jong.html.

MESTETSKII L.M., 2000. Fat Curves and Representation of
Planar Figures. Computers & Graphics 24(1) (2000) 9–
21.

MILLER, G.S.P., 1986. The Definition and Rendering of
Terrain Maps. In: SIGGRAPH ’86: Proceedings of the
13th Annual Conference on Computer Graphics and
Interactive Techniques, ACM, New York, NY, USA,
1986, pp. 39–48.

MOORE G., 1965. Cramming More Components onto
Integrated Circuits. Electronics 38(8) (1965).

MÜLLER P., WONKA P., HAEGLER S., ULMER A., VAN GOOL L.,
2006. Procedural Modeling of Buildings. In: SIGGRAPH
’06: Proceedings of the 33rd Annual Conference on
Computer Graphics and Interactive Techniques, ACM,
New York, NY, USA, 2006, pp. 614–623.

MUSGRAVE F.K., 1993. Methods for Realistic Landscape
Imaging. Ph.D. thesis, Yale University, New Haven, CT,
USA (1993).

PARISH Y.I.H., MÜLLER P., 2001. Procedural Modeling of
Cities. In: SIGGRAPH ’01: Proceedings of the 28th
Annual Conference on Computer Graphics and
Interactive Techniques, ACM, New York, NY, USA,
2001, pp. 301–308.

PRUSINKIEWICZ P., LINDENMAYER A., 1990. The Algorithmic
Beauty of Plants. Springer-Verlag, New York, NY, USA,
1990.

ROSENBERG J., 2010. GeoControl website. [Online]
www.geocontrol2.com.

SKETCHAWORLD 2010. SketchaWorld website [Online]
www.SketchaWorld.com.

SMELIK R.M., DE KRAKER K.J., TUTENEL T., BIDARRA R.,
GROENEWEGEN S.A., 2009. A Survey of Procedural
Methods for Terrain Modelling. In: Proceedings of the
2009 CASA Workshop on 3D Advanced Media In
Gaming And Simulation (3AMIGAS), Amsterdam, The
Netherlands, pp. 25–34.

SPEEDTREE, 2010. IDV Inc. Speedtree website. [Online]
www.speedtree.com.

SUN J., YU X., BACIU G., GREEN M., 2002. Template-based
Generation of Road Networks for Virtual City Modeling.
In: VRST ’02: Proceedings of the ACM Symposium on
Virtual Reality Software and Technology, ACM, New
York, NY, USA, 2002, pp. 33–40.

WEISSTEIN E.W., 2010. Barycentric Coordinates. MathWorld
- A Wolfram Web Resource. [Online]
mathworld.wolfram.com/BarycentricCoordinates.html.

WONKA P., WIMMER M., SILLION F., RIBARSKY W., 2003.
Instant Architecture. In: SIGGRAPH ’03: Proceedings of
the 30th Annual Conference on Computer Graphics and
Interactive Techniques, ACM, New York, NY, USA,
2003, pp. 669–677.

XFROG, 2010. Greenworks website. [Online]
www.xfrogdownloads.com.

