
Procedural generation and interactive web visualization of natural environments

Benny Onrust1 Rafael Bidarra1 Robert Rooseboom2 Johan van de Koppel2

1Computer Graphics and Visualization Group, Delft University of Technology, The Netherlands
2Department of Spatial Ecology, Royal Netherlands Institute for Sea Research, The Netherlands

Figure 1: A visualization of a salt marsh located in the Netherlands, rendered with our framework.

Abstract

Interactive 3D visualization of natural environments can help ecol-
ogists, policy makers and the broad public in general to better un-
derstand, promote and protect both existing and developing envi-
ronments. The creation and exploration of virtual worlds can be
very helpful for this purpose. However, current techniques are nei-
ther able to generate sound natural environments from ecological
data nor do they provide web-based visualizations at interactive
rates of such detailed ecological systems. In this paper, we ap-
proach the challenge of developing and interactively visualizing in
real time ecologically accurate and visually convincing models of
complex natural environments over the web. For this, we propose a
framework that (i) is able to combine landscape maps and ecolog-
ical statistical data, translating them to an ecologically sound plant
distribution, and (ii) creates a detailed 3D representation of the nat-
ural environment and provides for its fully interactive visualization
in real-time over the web. The main contribution of our research
consists of the real-time web-based visualization of complete and
visually convincing natural environments with their high density
and variability of individual organisms. The vegetation model com-
bines and improves techniques from procedural ecosystem genera-
tion and neutral landscape modeling. It is able to generate diverse
ecological sound plant distribution directly from landscape maps
with statistics about coverage and patchiness of plant species. The
visualization model uses several existing level-of-detail and illumi-
nation techniques to achieve interactive frame rates and improve
realism. From the validation of the results with ecology experts we
conclude that our framework provides very convincing interactive
visualizations of large virtual natural environments.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality I.6.3 [Simulation and Mod-
eling]: Applications

Keywords: WebGL, procedural generation, ecological models

1 Introduction

The visualization of existing and future natural environments is be-
coming more important for decision-making, as well as for recre-
ational and scientific communication, as it considerably helps to
better understand the various spatial relations in an environment
[Pettit et al. 2011; van Lammeren et al. 2010]. This is an impor-
tant topic for ecologists who are focusing on developing ecolog-
ical models that can predict how an environment develops in the
future. Such models use ecological and geophysical processes to
make these accurate predictions. The disadvantage of these models
is that the output lacks detail and often can only be used by ecolo-
gists. A 3D visualization of this data can be helpful to communi-
cate their work to non-ecologists or promote future/existing natural
environments to the public in general. The combination of ecolog-
ical models, existing geo-datasets and 3D visualizations is becom-
ing more relevant with the so-called ‘Building with Nature’ solu-
tions. Building with Nature is an initiative that focuses on the de-
velopment of nature combined with other utilities [de Vriend et al.
2014]. For example, instead of creating a complete dike to protect
the land against water, ecological process are promoted in that area
to develop natural dunes and it’s corresponding vegetation for water
protection. Not only can this area be used for protection, but also
for recreation purposes. Ecological models are being developed to
predict these processes and 3D visualizations could help to explore
and communicate these results. This requires that the 3D visual-
izations are very detailed, visually convincing and easily accessible
to the general public. Therefore, the output data from ecological
models or geo-datasets needs to be translated, in an ecologically



correct manner, into an accurate plant distribution. In addition, to
promote communication and dissemination, visualizations of such
results should be easily and widely accessible, making interactive
3D web visualizations little less than indispensable.

However, both the generation of ecologically sound plant distribu-
tions from given input data and the generation of detailed 3D en-
vironments that are suitable for interactive web-based visualization
are far from trivial tasks. The input data from either ecological
models or geo-datasets do not often contain enough detail to di-
rectly extract the exact plant positions to obtain a high density plant
distribution with a lot of variety in species. Therefore, procedural
generation techniques are used to generate and fill these missing
details. Most procedural techniques for natural environment fo-
cus either on simulation of ecosystems [Deussen et al. 1998; Chng
2010] or on the global generation of ecosystems using state-of-the-
art point generation technique to determine plant positions [Al-
sweis and Deussen 2006; Weier et al. 2013]. Both families of tech-
niques lack the ability to correctly translate ecological input data,
like coverage or patchiness data of plant species, to a plant distri-
bution with high-density and variety. Moreover, most techniques or
examples of interactive 3D visualization of high density natural en-
vironments focus on desktop and video applications [Bruneton and
Neyret 2012; Boulanger et al. 2006]. It is not possible to use these
techniques in a web environment, because browser-based solutions
do not have the same rendering capabilities as desktop-based solu-
tions. Current web-based visualization examples mostly focus on
generation of natural environment with only terrain or a low plant
density [Fanini et al. 2011; Herzig et al. 2013].

Therefore, the main questions answered in this paper are (i) how to
generate an ecologically convincing plant distribution from ecolog-
ical input maps and (ii) how to generate a visually convincing in-
teractive 3D web-based visualization for natural environments with
high-density and variety in plants. We answer these questions by
proposing a framework with (i) a vegetation model that combines
procedural and ecological model techniques to translate landscape
maps to an ecologically sound plant distribution and (ii) a visualiza-
tion model that translates the generated plant distribution into a 3D
representation suitable for web-based visualization at interactive
frame rates. The vegetation model is able to translate input land-
scape maps with statistics about coverage and patchiness of plant
species to a sound plant distribution; and the visualization model
supports rendering natural environment with high-density and vari-
ety of plants.

The paper is organized as follow: First, we give an overview of re-
lated work regarding ecological modeling, procedural ecosystem
generation, and the interactive 3D visualization of natural land-
scapes. Next, we present the complete overview of our framework.
The following two sections discuss respectively the vegetation and
visualization model of our framework. In Section 6, we present our
WebGL-based implementation of the framework. We present and
discuss the results in Section 7. Finally, we draw conclusions and
present possible future work.

2 Related Work

This section provides an overview of techniques related to ecologi-
cal modelling, procedural ecosystem generation, and interactive 3D
visualization of natural environments. An overview of ecological
and procedural techniques is included to show the current limita-
tions in generating plant distributions. As to interactive 3D visu-
alization, we also include non-web-based solutions, because of the
limited examples that are available for interactive web-based visu-
alization for natural environments. We do not include a review of
generative algorithms to produce individual 3D plant models, as a

recent overview of such techniques can be found elsewhere [Smelik
et al. 2014].

Ecological model techniques We divide ecological model tech-
niques into two categories: dynamic and neutral model techniques.
Dynamic models simulate ecological and geophysical processes
[Molofsky and Bever 2004], which result normally in raster maps
containing information about height, biomass, and/or coverage of
certain vegetation at a certain point in time [Temmerman et al.
2007; Rietkerk and Van de Koppel 2008; Schwarz 2014]. This
data often lack details to extract plant positions. Dynamic mod-
els give the possibility to extract spatial information about future
landscapes. Figure 2 shows the output of a dynamic ecological
model with output at different time stamps. Neutral models gen-
erate classification grid maps based on coverage and shape metric
information per plant species. Shape metric values give informa-
tion about the patterns/patchiness of a plant species (e.g. a type
of plant could grow scattered in an area or grow very close to each
other). This input data is translated to a single plant species for each
grid cell on the input map by using either a MRC (Modified Ran-
dom clusters) model [Saura and Martı́nez-Millán 2000] or fractal-
based model [Hargrove et al. 2002]. The disadvantage of neutral
model techniques is that, similarly to dynamic models, plant posi-
tions can often not be extracted directly from the generated maps.
Another disadvantage is that neutral models assume that the con-
ditions for each plant species are the same for the complete envi-
ronment (hence the name neutral). For example, they assume that
the coverage value for a plant species is the same at every loca-
tion in the environment. Often, this assumption does not hold in
real-world environments. Our vegetation model, will use dynamic
models to obtain ecological and spatial information of future land-
scapes, such as height and coverage data. Neutral model techniques
are then combined with procedural techniques to translate the in-
formation from the dynamic model to an ecologically correct plant
distribution.

Figure 2: Example outputs of a dynamic ecological model at
different time stamps [Temmerman et al. 2007].

Procedural ecosystem generation techniques Procedural
ecosystem techniques can compute virtual plant distributions and
be divided into two categories: local-to-global or global-to-local.
Techniques from the local-to-global category use multi-set L-
systems to simulate plant growth and competitions [Deussen et al.
1998; Lane and Prusinkiewicz 2002]. To obtain a complete ecosys-
tem, it is necessary to iterate through the L-system rules and stop
the simulation after a certain amount of iterations. Local-to-global
techniques give the possibility to model individual behaviour for
each plant. Complex behaviour can be modelled such as realis-
tic competition for sun light and soil resources [Chng 2010]. The
disadvantage is that the controllability of these techniques is low,
because it is not possible to predict the outcome after the simula-
tion is finished given the input parameters. They are not able to
to translate maps and statistics about the environment to a correct
plant distribution. Instead, these methods are good in showing in-
teractions between different plants.

The global-to-local techniques do not use a simulation process to
calculate a plant distribution and plants are not modelled individ-



ually. Instead, positions from plants are calculated directly from
a global-defined environment. Hammes [Hammes 2001] uses a
method that defines possible ecotypes for an environment. An eco-
type is for example a forest or desert. Given a height map the like-
lihood for each tile for every ecotype is calculated. The ecotype is
selected with highest probability in combination with random varia-
tion. Next, plants belonging to that ecotype are scattered randomly
in that tile. This method is limited, because plants are randomly
placed within a tile and only a single type of plant was used. In
addition, the final distribution does not follow the input probabil-
ity values for each ecotype. Lane [Lane and Prusinkiewicz 2002]
places each plant with a dart-throwing algorithm in combination
with a probability fields to place plants more at their preferred lo-
cation. In addition, each plant can exhibit neighborhood effects
on the remaining plants by updating the probability field around
with a negative or positive effect. Again, with this method it is not
possible to have the input plant species follow a certain statistical
distribution. Alsweis [Alsweis and Deussen 2006] generated plant
distributions by generating points following the PDD (Poisson Disk
distribution) in combination with Wang tiling to efficiently gener-
ate all the points. This method, however, did not investigate how
to classify/assign these points to a plant species. The placement of
different plants with different sizes was however convincing.

Weier [Weier et al. 2013] extended the previous technique by also
classifying these points to different plant species, using a combi-
nation of the previously discussed methods of Hammes [Hammes
2001] and Lane [Lane and Prusinkiewicz 2002]. First, a complete
point set was generated following the PDD with a Wang tiling tech-
nique. Each point receives probability values for each plant species.
Next, each point gets assigned the plant species with the highest
probability in combination with some random variation. Finally, a
group of points is selected that have a probability value with the
highest standard deviation, and are, thus, most certain to stay by
the same plant species. These points are used to exhibit a neighbor-
hood effect on their neighboring points. To include this effect in the
classification, the classification process is repeated until a number
of iterations has been done or when a certain amount of points do
not change plant species anymore. The disadvantage of this tech-
nique is that the classification process does not translate in the input
statistical distribution to the final plant distribution. Also, it is dif-
ficult with only the neighborhood kernel to generate different kinds
of plant patterns in the plant distribution. In our vegetation model,
we will partly adopt the PDD generation and classification process,
but we combine it with a neutral modelling technique to be able to
correctly translate statistical data about coverage and patchiness of
plat species to the plant distribution.

Interactive 3D visualization of natural environments The 3D
rendering of natural environment with high vegetation count is a
difficult problem, even with dedicated software and/or hardware,
due to the high polygon count and light interaction. Deussen
[Deussen et al. 2002] proposed a method for rendering of complete
complex plant ecosystems by abstracting further away objects into
points and lines. Bruneton [Bruneton and Neyret 2012] developed
a technique, which is able to render a realistic forest representation
in real-time with realistic lighting at all scales. They use a z-field
representation to render the nearest trees individually and a shader
map representation to render far-away trees. The resulting lighting
was realistic and suitable for real-time purposes. Wang [Wang et al.
2013] proposes a method that greatly reduces the memory footprint
of large detailed forests.

Other techniques focus on the rendering of millions of grass blades.
Boulanger [Boulanger et al. 2006] proposes a method to render
large amount of grass blades with dynamic lighting. A LOD (level
of detail) system divides the grass blades in different representa-

tions. Close to the viewer geometry models are used, from mod-
erate distance, blades are represented with vertical and horizontal
slices, while far-away only the horizontal slice is used. A modifica-
tion of the alpha blending technique is used to blend the transitions
between the LODs. Allthough, these are non-web based solutions,
it provides insight in how to organize the data to maintain real-time
performance and to create transition between the different LODs.
Fan [Fan et al. 2015] extended this method with animations.

The interactive web-based 3D rendering of natural environment is
a fairly new topic and did not get much attention so far. We did not
find, in the current literature, any examples of 3D interactive visu-
alization of natural environment with high vegetation count. Cur-
rent techniques focus on real time generation of complete environ-
ments without vegetation focusing on geo-visualizations [Fanini
et al. 2011; Herzig et al. 2013]. These visualizations focus on the
streaming of geo-data to the browser and the organization of the
data to achieve interactive frame rates. Data is often organized in
groups using quadtree structures to reduce far-away geometry.

3 Our Framework

Here, we provide the outline of our framework to provide 3D web-
based visualization of natural environments. It is often not possible
to automatically extract plant positions and their species from maps
of existing and future landscapes, because these maps lack details
and are too general. In section 2, we discussed models that try to
determine plant positions from these maps in combination with sta-
tistical data of the expected plant distribution. This statistical data
can contain information about the coverage or grow patterns of the
plants. These discussed methods are limited, mainly because they
are not able to determine when all the plant positions are given to
correctly translate the statistical data to the final distribution. Thus,
the input statistics do not match with the statistics of the output
distribution. Also, it is difficult to consistently generate different
kind of patterns for each plant species or different kinds of patterns
for a certain plant species depending on the location in the envi-
ronment. Our framework solves this first problem by combining
existing procedural techniques with neutral modeling techniques.
The second problem is how to organize and translate this data for
an interactive 3D visualization on the web. There are current tech-
niques that provide solution for the real-time visualization of large
natural environment in non-web environments. Often, they only
focus on the visualization of single plant species such as grass or
trees. Our framework shows how to organize and translate the plant
distribution to a 3D representation and web-based visualization.

This sections presents an overview of our framework. First, we in-
troduce some terms frequently-used throughout the paper. Next, we
talk about the requirements of our framework and third we discuss
the input of our framework. Finally, we give a global overview of
the process of this framework. In the subsequent sections, each part
of the framework is discussed in more detail. Section 4 discusses
the model to generate an ecologically sound plant distribution from
landscape maps. Section 5 discusses how the generated plant dis-
tribution must be organized and translated for a 3D representation
to achieve real-time performance for a web-based environment.

Terms In our framework we regularly use the following terms:

• Plant species: The species of the plant. For example, an oak
or birch.

• Plant spacing: The minimum distance required between
plants. Plant spacing is often related to the plant size.

• Plant level: Different plant species that are placed in one
group, because they have approximately the same plant spac-



ing. These groups are used in the vegetation model to process
multiple plant species simultaneously.

• Plant patterns or patchiness: The patterns of the plants of a
certain plant species. For example, plants of a certain plant
can grow close to each other, having a high patchiness or they
could grow scattered through the environment having a low
patchiness.

Input The first part of this framework requires landscape maps
and coverage statistics to generate a plant distribution. The cover-
age statistics must be dependent on the landscape maps, e.g. cover-
age statistics based on the height requires a height map. The second
part of our framework requires input that defines the geometry of
the 3D representation of the environment.

Thus, the inputs of our algorithm are:

• Landscape maps, for calculating plant distribution and 3D vi-
sualization of the environment. For example, a height map for
the 3D visualization of the terrain.

• Statistics about the coverage per plant species, and about the
patchiness of each plant species.

• One or more 3D models per plant species.

Requirements The goal of this framework is to translate land-
scape maps obtained from either ecologically or geographical data
sets to an ecological sound plant distribution and generate from this
distribution a real-time 3D web-based visualization. Therefore, the
framework has the following requirements:

• Real-time 3D web-based visualization

• The input coverage and patchiness statistics with various land-
scape maps should match with the statistics of the generated
plant distribution.

• Support for different plant species, sizes, and patterns.

Overview To meet the above requirements, the framework con-
sists of two main components. The first component deals with the
generation of plant distribution from landscape maps in combina-
tion with statistical data about coverage and patchiness of the plant
species. This algorithm consists of two components: a plant po-
sition generation and a plant species generation component. The
plant position component computes based on the input maps all
possible plant positions in the environment. This step takes into ac-
count the required minimum distance between the different plants.
The plant species generation component classifies the generated
plant positions to one of the plant species or nothing. The reason
for separating these components is that it gives us the possibility to
accurately map the statistical information. Details of this algorithm
can be found in Section 4.

The second part is to organize and translate the generated plant dis-
tribution to a real-time/interactive 3D web visualization. Simply,
putting a 3D model at every generated location in the plant distri-
bution does not work, because of the high density of the plant distri-
bution, which results in high geometry complexity. Therefore, the
plant distribution has to be organized into different levels of detail
to reduce the complexity of the scene. We organize the distribution
into three levels: Models, billboards, and ”far-away” field. Models
are placed close to the viewer to increase the realism of the scene.
Billboards middle distance and the ”far-away” field does not gener-
ate geometry for a plant, but only colors the underlying terrain. In
Section 5 each of these representations and the transitions between
them are discussed in more detail.

4 Vegetation Model

This section describes the algorithm to generate a plant distribu-
tion from landscape maps in combination with statistical data about
coverage and patchiness of the plants in the environment. The al-
gorithm is divided into two main components: plant position gen-
eration and plant species generation. In addition, we will discuss
separately the multiple plant level support of the algorithm.

4.1 Plant position generation

The goal of this component is to generate all possible plant loca-
tions in the environment. In the next component, these positions are
classified using the coverage and patchiness statistics of each plant
species. To obtain all possible plant positions, we adopt the PDD
with Wang tiling technique used by Alsweis [Alsweis and Deussen
2006] and Weier [Weier et al. 2013]. This technique gives the pos-
sibility to generate points randomly uniformly with a minimal dis-
tance from each other: the same behaviour that can be found in
nature. The next paragraphs explain how these plant positions are
generated.

Identify vegetated tiles The first step is to identify on an input
map of the landscape all the tiles that contain vegetation. This re-
quires the use of a map that provide information of where vege-
tation is located, for example NDVI, biomass, or coverage maps.
The next step is to threshold the map given a user-defined thresh-
old. Each tile with a value higher than the threshold is marked as
vegetated.

Generate plant positions from vegetated tiles Points are gen-
erated with the PDD and Wang corner tiling technique [Lagae
2007]. Wang corner tiling is used to avoid the corner problem that
appears in the regular Wang border tiling technique. A Wang tiling
is created with only the tiles on the map that are marked as vege-
tated. Next, each Wang tile is filled with a PDD. The exact proce-
dure of how the Wang tiling is created and used in combination with
PDD is described in detail elsewhere [Onrust 2015]. The result of
this process is a seamless point distribution where each point has at
least a user-defined minimum distance to each other where only the
vegetated tiles on the map contains points. The minimum distance
is determined based on the plant size.

4.2 Plant species generation

The aim of the plant species generation component is to classify
the generated point distribution. The classification is based on frac-
tal neutral modeling techniques [Hargrove et al. 2002]. These are
able to classify raster maps using coverage and patchiness statistics
for each plant species. As mentioned in Section 2, they are only
able to correctly translate static coverage and patchiness data. We
extend this method to integrate with the generated point distribu-
tion, so that it is able to work with non-static statistical coverage
and patchiness data. The next paragraphs explain step-by-step this
classification procedure.

Assigning coverage and patchiness data The first step is to
assign each point a single coverage and patchiness value for each
plant species in the environment. First, each point extracts the ap-
propriate value of each input map; for example, if the input is a
height map, each point is assigned a height value based on the lo-
cation in the map. The extracted values are translated to a coverage
value by using the corresponding statistical data; for example, sta-
tistical data that contains information about the coverage of each
plant species for a certain range of height values. It is possible that



multiple coverage values are extracted for the same plant species for
a single point when multiple input maps are supplied (e.g. height
map and a soil map). These coverage values are merged to a sin-
gle value by taking the minimum value, because we assume that
the minimum is the limiting grow factor for that plant species. The
same process is applied for extracting the patchiness values. Patch-
iness is represented with two values: Hurst, to represent roughness,
and patch area, for the size of the patterns.

Fractal generation The second step is to calculate a fractal value
for every plant species of each point. Fractal values are used, be-
cause these values can be used to represent different kinds of pat-
terns in nature [Hargrove et al. 2002]. The advantage of fractal
algorithms is that they calculate a random value for a point that
depends on the point location. This gives the possibility to gener-
ate similar random values for points that are close to each other or
vice-versa. Thus, we can represent plants that grow close to each
other or are scattered throughout the environment. Therefore, our
fractal algorithm must be able to translate the input Hurst and patch
area data to an individual fractal value for each point for every plant
species. In addition, it is possible that the Hurst or patch area value
are not static value values for every plant species, in contrast to
neutral modelling techniques. Therefore, we use a modified fractal
Brownian motion algorithm of which the exact details are discussed
in [Onrust 2015]. This algorithm is able to generate fractal values
for each point individually for every plant species using the Hurst
and shape are input parameters.

Classification The last step is to classify each point to a plant
species using the coverage and fractal values that were assigned to
each point in the previous steps. First, each plant species calculates
for every point an individual threshold value. The threshold value
of a point is found by taking an ordered list of the fractal values
of all the points of that particular plant species, and then using the
coverage value of each point as percentile in that list. The fractal
value that matches with the position of the particular percentile is
the threshold value that is going be used by that point.

Now each point has, for every plant species, a separate threshold
that is based on the coverage values. Next, for each plant species
the fractal and threshold value of each point are compared. When
the fractal value is higher than the threshold value, the point is as-
signed the plant species that belongs to both values. The result
of this step is that each plant species gets assigned a set of points
matching the coverage and patchiness input statistics. However, it
may happen that certain points have been assigned to multiple plant
species. These conflicts are solved by assigning the plant species
with the highest fractal value for these points. The consequence is
that certain plant species have less coverage than what is expected.
Therefore, the remaining non-classified points have to be classified
to compensate for the missing coverage of each plant species

Before the remaining points can be classified, it is first necessary to
update the coverage values so that each plant species will have its
expected coverage in the final plant distribution. First, the coverage
statistics are updated for each input map by generating several ref-
erence points that are uniformly distributed over the complete range
of the values of the input map. Next, for each reference point, the
amount of total coverage is calculated that is obtained in the cur-
rent plant distribution. This is compared with the expected cover-
age and, by subtracting the received coverage, we get the amount of
missing coverage per reference point. Per reference point, all cov-
erage values are normalized. Next, coverage values can be assigned
as usual as in the first step of this component.

The remaining points are assigned a plant species by repeating the
same classification process. The only difference is that the plant

species are processed one-by-one each time on the new remaining
point set, so that there are no conflicts generated. The main rea-
son for this step is to stop the algorithm; otherwise, conflicts were
most likely to be generated, and the same process repeated. The
plant species with the highest standard deviation in their average
patchiness statistics in comparison with the other plant species is
processed first.

An example result of this complete process is shown in Figure 3
where a plant distribution is generated for an existing salt marsh
located in the Netherlands. Different kinds of patterns and locations
in the environment for each plant species (each color is a unique
plant species) are clearly visible.

Figure 3: Result generated by the vegetation model. On the left
the complete generated plant distribution is shown for the

Paulinapolder salt marsh in the Netherlands. On the right a more
detailed view is provided. Each color is a different plant species.

4.3 Multiple plant levels

In the previous sections, we assumed that all plants have approxi-
mately the same size, and thus, that all plants belong to the same
plant level. However, the vegetation model also supports plant
species with large difference in plant size, such as trees and flow-
ers. This requires some small additions to both the plant position
generation and plant species generation part.

Plant position generation Plant positions for multiple plant lev-
els are generated semi-separately from each other. We start with
generating plant positions from the largest plant level (i.e. the plant
species that have the largest plant size) down to the smallest plant
level. A plant level that is processed takes into account the points
that are already placed on the map. The only problem is now how
to take into account the points that are already generated by the
previous plant levels. There are two options: use for these points
the minimal distance of their plant level, or use for these points the
same minimal distance of the current processed plant level. We use
the last option, because we do not know yet if a point generated for
a certain plant level is also classified to one of the plant species of
that plant level. It is possible that during the classification a point
is not assigned a plant species of that plant level. Then, we do not
want to throw away this point but use it for the processing of plant
species of the lower plant levels. With our choice, the integration
will be seamless, while with the other option the point would be iso-
lated, because it has much larger distance to the other points than it
should have.

Plant species generation Again, the plant levels are processed
sequentially from each other, starting with the largest plant level till
the smallest plant level. Each plant level uses the plant positions
that are generated for his plant level and the plant positions that



have not been classified by the previous processed plant levels. The
regular classification process is used for each plant level. After the
classification of a plant level, there is the possibility to apply neigh-
borhood influences, like in the previous work of Lane [Lane and
Prusinkiewicz 2002], and Weier [Weier et al. 2013]. These neigh-
borhood effects influences the coverage statistics of the neighboring
non-classified points and it gives the possibility to model influences
of for example trees on the neighboring smaller plants.

5 Visualization Model

This section explains how the generated plant distribution is orga-
nized and translated to a 3D representation that supports visualiza-
tion over the web at interactive frame rates. The structure is as
follows: first, we explain the data organization of the plant distri-
bution. Next, we discuss the transitions between the different data
structures, and finally, we give an overview of the complete render-
ing framework.

Data organization For the visualization, the input plant distribu-
tion has to be translated into a 3D representation. Due to the high
density of the distribution and the size of the complete environment,
it is not possible to represent every plant as a detailed 3D model, be-
cause that would result in a high geometry complexity, drastically
dropping the performance of the visualization. Therefore, to reduce
the geometry, it is necessary to use different LODs for the plants.
This means that a different representation for a plant, other than
its 3D model, has to be used, depending for example on the plant
location relative to the viewer: it is not necessary to place a de-
tailed 3D model far away from the viewer, because the details of
such model cannot be seen anyway. For our framework, we adopt
a LOD schema that divides the plant distribution in three zones de-
pending on the location of the viewer. This schema is similar to
a LOD technique proposed for the rendering of millions of grass
blades [Boulanger et al. 2006]. The first zone, closest to the viewer,
consists of complete 3D models, to better convey the impression
of a richly detailed environment. In the second zone, further away,
plants are represented as billboards, i.e. by flat images. To support
very large scenes, we also included a third zone, further towards
the horizon, where plants are not represented individually, but as a
texture applied on the terrain. The switching between zones is de-
pendent on the distance to the viewing point, and can be configured
as a user-defined threshold.

To use this LOD scheme, we had to solve another problem: it is
not feasible to calculate for each plant its appropriate LOD repre-
sentation, as this would require every frame to iterate over many
thousands of plants on the CPU. Therefore, neighbour plants are
grouped together and a single check is made for the whole group.
These groups are generated by dividing the plant distribution and
storing it in a quad tree structure [Deussen et al. 2002] [Bruneton
and Neyret 2012]. The whole distribution is divided in four equal
quads and each of these quads is again divided in four quads. This
continues up to a number of iterations defined in the framework. A
quad at a certain level in the quad tree is selected when it is within a
certain distance from the viewer. This gives the possibility to place
the smaller quads close to the viewer and larger quads further away.
The same quad tree structure is used to organize the terrain data.

Transition between LODs Using different representation for the
plant model at fixed distances from the viewer leads to another
problem: ‘popping’. The popping effect is noticed when plant rep-
resentations switch between different LODs. This is an unwanted
artifact and can distract the viewer from the visualization. There-
fore, it is necessary to smooth the transition between the different

LODs. In our case, we have two transitions: between plant model
and billboard objects, and between billboards and terrain. The
smoothing procedure for each transition is explained separately, al-
though both procedures are based on the alpha blending.

The first step to blend both representations is to create a small, con-
figurable, overlapping band where both representations for a plant
coexist on the same location. Next, for each position in this tran-
sition zone an alpha value is calculated that indicates how much
of the plant is blended. This is calculated both for plant models,
Formula (1), and for billboards, Formula (2):

aplantmodel = clamp(
(distance− b1)

(b2− b1)
, 0.0, 1.0) (1)

abillboard = 1.0− clamp(
(distance− b1)

(b2− b1)
, 0.0, 1.0) (2)

The distance factor is the calculated distance between the viewer’s
position and the plant position. The factors b1 and b2 are the dis-
tances to the closest border of the transition zone, and to the furthest
border, respectively. The result is that plant models in the transi-
tion border have an alpha near to one when closest to the viewer,
but gradually fade out as they get close to the other border of the
transition zone. For the billboards’ alpha values, the inverse hap-
pens. The calculated alphas of both representations are now used
to blend both representations. This is achieved by generating two
separate images with one only the plant models and the others with
billboards, during the generation of these images the alpha values
are mapped to the alpha band of these images. Each of this images
contains the alpha value for each pixel. Finally, a new image is gen-
erated by combining both images. The color of each pixel in the
new image is a combination of the colors of the billboard and plant
model image using formula 3 where aplantmodel and abillboard are
the alpha values, and pplantmodel and pbillboard the color value of
the same pixel in both images. In the end, this process creates a
smooth transition when switching between plant model and bill-
board objects.

pixelnew = aplantmodel∗pplantmodel+abillboard∗pbillboard (3)

The process for the transition between billboards and the terrain
is similar as for the transition between plant model and billboard
objects. Again, an overlapping zone is created and for billboards
and terrain an alpha value is calculated. The alpha for billboards
is calculated this time with Formula (1) and for the terrain with
Formula (2). Again, billboards fade out using the alpha value, but
the terrain does not use the alpha value to become semi-transparent.
Instead, it used the alpha value to blend with the original color of the
terrain. The result is that billboards gradually fade out and that the
terrain takes over with a color that is similar to that of the billboards.

Rendering framework In this paragraph, we give an overview
of the complete rendering framework, including the pre-processing
steps, and the rendering steps. The first step is to prepare the scene
for the actual rendering. During this step, a terrain mesh is gen-
erated from a raster height map, and the different LOD represen-
tations for the plants are generated. In addition, both the terrain
and plant distribution are divided into a quad tree structure. The
3D plant models are generated offline by using a node-based 3D
modeling tool called Construct, [Silva et al. TBP 2015] for which
we developed a special L-systems plug-in. Billboards are generated
from these models. The third representation is computed during the



pre-processing phase by first finding for each vertex in the terrain
mesh all the closest plants within a pre-defined distance. Then, for
each vertex it is calculated how much each plant species contributes
to the final color. The plant species with the maximum contribution
is selected. At run-time, the terrain vertices receive the correspond-
ing color.

The rendering step is divided into three parts. The first two parts
are the rendering of the separate images for respectively the plant
model and billboard objects with their underlying terrain and water.
For the plant model objects shadows are computed for the models
itself and the underlying terrain by using the percentage-closer soft
shadow mapping technique is used [Fernando 2005]. Shadows are
not computed for the billboards and their underlying terrain, be-
cause we want to minimize the rendering time. Instead, shadows
are integrated into the texture of each billboards, and shadows on
the ground are approximated by making the terrain color darker at
place where plants are located. Finally, during the third part both
images are blended together, as described above.

6 Implementation

The implementation of our framework involves several modules.
The vegetation model is implemented with Python scripts and its
output is stored in a text file that is used as input for the visualiza-
tion model. The visualization model was implemented with We-
bGL, because it is a cross-platform free web standard that gives
access to the low-level 3D graphics API based on OpenGL ES 2.0.
In addition, the user does not have to install any plug-ins, because it
is implemented right into the browser and all major browsers sup-
port WebGL. For the actual implementation, we used an existing
WebGL framework three.js [Cabello 2010].

To reduce the data load to the GPU, we store all the terrain and plant
data directly in the GPU by using VBOs (Vertex Buffer Objects).
In the VBOs, plants are stored as a single instance with attached
a list of their positions, scales, and rotations. During, rendering
the stored instance is placed multiple times using the attached lists.
This process is called geometry instancing and reduces the memory
footprint as well.

The generation of billboards is more difficult, because WebGL cur-
rently does not support geometry shaders, which are an efficient
way to generate different billboards [Bruneton and Neyret 2012],
since a single point is sent to the GPU. An alternative solution
would be to generate a complete quad, but this results in sending
additional geometry to the GPU, which we want to limit. We de-
cided to represent each billboard as a single point and draw it in
the fragment shader as several pixels on the screen. The size of the
point (in number of pixels) can be adapted, giving us the possibility
to draw large points close to the viewer and smaller further away.
Another advantage is that the billboards are always turned to the
camera. The disadvantage of this method is that the point is always
a perfect square, meaning that we process some unused fragments
on the GPU for every billboard, when the billboard texture is not
perfectly squared.

The transition between the plant model and billboard objects was
achieved by rendering two separate images and then blend them
together. WebGL provides support for FBOs (Frame Buffer Ob-
jects), which can be used to render results to it instead of to the
screen. Therefore, the plant models and billboards are render both
to a separate FBO in RGBA format. The RGBA format is impor-
tant, because the alpha channel is used to blend both FBOs. Next, a
final FBO is created which stores the blending result and renders it
to the screen.

Shadows are computed with percentage-closer soft shadow map-

ping technique for both the plant model objects and terrain. The
main reason for using this technique is that an implementation was
already supported by the three.js framework.

7 Results and Discussion

We generated results for an existing area called the Paulinapolder, a
salt marsh located in the South of the Netherlands. A plant distribu-
tion was generated from our vegetation model by using landscape
maps about height and NDVI in combination with statistical cov-
erage and patchiness data for each plant species. Next, with the
visualization model, the height map and generated plant distribu-
tions are translated into our 3D representation, for interactive web
visualization. In this section, we first present the results generated
by our framework. Next, we discuss the performance of the visual-
ization, followed by the validation of the results. Finally, we discuss
the results and the complete framework.

Results The result of the vegetation model for the Paulinapolder
input is shown in Figure 3. Figures 1 and 4 present a global vi-
sualization of the virtual Paulinapolder environment. Figure 5 cap-
tures the seamless transition between the different LODs. The same
figure shows a close-up view of plant models in the environment.
More results, including a video and the web visualization, are avail-
able (https://graphics.tudelft.nl/benny-onrust).

Figure 4: Global overview of the virtual Paulinapolder.

Figure 5: The seamless transition between the different LODs.
Far-away LOD is colored blue. Billboards are colored red, and the

plant models have their regular color.

Performance The complete scene has around 700,000 plants. A
typical frame of this scene consists out of 2,2 million faces to ren-
der the plant models, terrain, water, and background. In addition,
380,000 points are necessary to represent the billboards. The ren-
dering of a typical frame with a resolution of 1920x1080 takes
around 165ms using a NVDIA Quadro k1000m GPU. Of this time,

https://graphics.tudelft.nl/benny-onrust


plant models are rendered in 65 ms, and their shadow computation
takes 27 ms; billboards are rendered in 38 ms, terrain in 18 ms, and
water in 5 ms.

Validation We validated our results by having ecologists judge
the visualization. In addition, we calculated the coverage statis-
tics from the generated distribution to show that the input cov-
erage statistics are approximately equal. The validation with the
ecologists confirmed that our framework is able to generate differ-
ent kinds of patterns for each plant species depending in the input
statistics. Figure 4 shows several of these different patterns rang-
ing from very large patterns of plants that grow closely together, to
small random patterns of plants that grow scattered throughout the
area. A disadvantage of the current visualization is that when in
global view some billboard objects tend to become too small which
creates small gaps in the distribution. The local view of the plant
model objects was deemed convincing and the zone transition was
not noticeable, or in any case not distracting. The calculated cover-
age statistics from the generated plant distribution was found to be
almost similar as the input coverage statistics [Onrust 2015].

Discussion The aim of this research was to procedural generate
an ecological correct plant distribution from ecological maps and
statistics. In, addition, the generated plant distribution should be
translated to a convincing real-time 3D web visualization. Also,
the plant distribution generation solution should be generic mean-
ing that it should support different plant species and, patterns, and
input data. The validation showed that these requirements were in
general met. Using mathematical validation and expert validation,
we showed that input ecological maps and statistics were translated
to a plant distribution with convincing patterns. Expert validation
and performance measurements showed that we were able create a
convincing real-time 3D visualization. We also found several limi-
tations in our presented framework.

The main limitation of the visualization model is in the representa-
tion of the billboards. Billboards are represented as a single point
that are rendered as several pixels on the screen to maximize the
rendering performance. This means that billboards are represented
as a single slice, directly facing the camera independent from which
angle. Billboards that are viewed globally with a birds-eye view do
not look convincing, because the same slice that is used to view the
billboards horizontally, is also used to view the billboards vertically.
In the current visualization, this is often not visible, because all the
plants are relatively small and have relatively monotonic color, but
when the plants become larger, this will be noticeable. In addition,
it is difficult to set automatically the correct size for each billboard
for every viewing distance, because size is measured in the number
of pixels. Figure 4 shows that the current representations leads to
problems, because small gaps appear at the middle-range distance
from the viewer around certain plant species.

Other limitation of the billboards is that the shadows of the bill-
boards are approximated by using baked-in shadows in the texture
and the shadow cast on the terrain is approximated by turning the
terrain color slightly darker. The shadow cast does not use the ac-
tual shape of the plants. In Figure 5 it can be seen that the billboards
objects have different shadows on the ground than the plant model
objects. Shadow computation for billboards could be improved by
(partly) replacing the current billboards with the concept of volu-
metric billboards [Decaudin and Neyret 2009]. These are able to
generate realistic shadows and realistic different viewing angles.
However, their efficient implementation requires for example the
use of a geometry shader, which is not yet available in WebGL. Ad-
ditional research in this topic could greatly enhance the realism of
3D plant distributions, because it allows for the generation of more

convincing billboards, which are the weakest aspect in the current
visualization.

Another disadvantage is the shadow computation technique for the
plant model objects in the visualization. Currently, we use the per-
centage closer shadow mapping technique that was directly avail-
able in three.js. The computed shadows are realistic enough for our
purposes, but performance-wise it could be improved by for ex-
ample using a variance shadow mapping technique [Donnelly and
Lauritzen 2006].

Finally, the transition between the plant models and billboards is
in most cases smooth and there are limited ghosting or popping ef-
fects. When there is a large difference in size between the plants in
the visualization, the transition is less smooth for the larger plants.
The reason for this is that the transition thresholds are the same
for all plant model objects. This could be improved by varying the
threshold per plant species. The larger plant species could switch
later to a billboard representation.

8 Conclusion

We presented the design and implementation of a framework for
the generation and rendering of ecologically sound plant distribu-
tions and environments. The central issues of plant distribution
generation from landscape maps and statistics, and the rendering of
the plant distribution to a web visualization with interactive frame
rates were addressed with a combination of techniques. For the
plant distribution generation, we presented a new model that com-
bines existing procedural plant placement techniques using Poisson
Disk Distribution with Wang tiling technique in combination with
concepts from neutral modeling techniques. A convincing inter-
active 3D web visualization was created by using existing LODs,
shadow mapping, instancing techniques. We tested our system by
generating a plant distribution for an existing environment using its
landscape maps and statistics. Ecologists validated our results and
found the results in most convincing. Statistics showed that our
framework is able to translate correctly the input coverage statistics
to the output plant distribution.

Our work stands out from previous research, because (i) our plant
distribution generation is fully data-driven, and (ii) we demon-
strated with our interactive visualization WebGL prototype the pos-
sibilities of rendering over the web very large natural environments
with a high density and variety of plants.

In the future, we would like to improve and research whether other
representations of billboards improve the visualization at different
viewing angles, especially in global view. In addition, we would
like to investigate more local and global illumination models to im-
prove performance and realism of lights and shadows in the visual-
ization. To improve the usability of this method, it might be prefer-
able to combine the vegetation and visualization model in one web
application, so that the user can easily change the plant distribution
in the 3D visualization without having to do offline computations.
Further, it might be interesting to extend the framework by includ-
ing the fauna of the environment to improve realism [Komodakis
et al. 2005]. Finally, our framework has only been tested on en-
vironments with only grass-like plant species; we would like to do
additional testing for other more forest-like scenes to investigate the
quality and performance of its results.

Acknowledgements

We would like to thank Alex Kolpa for helping with the implemen-
tation of the L-system plugin in Construct.



References

ALSWEIS, M., AND DEUSSEN, O. 2006. Wang-tiles for the sim-
ulation and visualization of plant competition. In Advances in
Computer Graphics, vol. 4035 of Lecture Notes in Computer
Science. Springer, 1–11.

BORSBOOM-VAN BEURDEN, J., VAN LAMMEREN, R., HOOGER-
WERF, T., AND BOUWMAN, A. 2006. Linking land use mod-
elling and 3d visualisation. In Innovations in design & decision
support systems in architecture and urban planning. Springer,
85–101.

BOULANGER, K., PATTANAIK, S., AND BOUATOUCH, K. 2006.
Rendering grass terrains in real-time with dynamic lighting. In
ACM SIGGRAPH 2006 Sketches.

BRUNETON, E., AND NEYRET, F. 2012. Real-time realistic ren-
dering and lighting of forests. In Computer Graphics Forum,
vol. 31, 373–382.

CABELLO, R., 2010. three. js-javascript 3d library.

CHNG, E. 2010. An artificial life-based vegetation modelling ap-
proach for biodiversity research. Green Technologies: Concepts,
Methodologies, Tools and Applications, 417.

DE VRIEND, H. J., VAN KONINGSVELD, M., AARNINKHOF,
S. G., DE VRIES, M. B., AND BAPTIST, M. J. 2014. Sustain-
able hydraulic engineering through building with nature. Journal
of Hydro-environment Research.

DECAUDIN, P., AND NEYRET, F. 2009. Volumetric billboards.
In Computer Graphics Forum, vol. 28, Wiley Online Library,
2079–2089.

DEUSSEN, O., HANRAHAN, P., LINTERMANN, B., MĚCH, R.,
PHARR, M., AND PRUSINKIEWICZ, P. 1998. Realistic mod-
eling and rendering of plant ecosystems. In Proceedings of the
25th annual conference on Computer Graphics and Interactive
techniques, ACM, 275–286.

DEUSSEN, O., COLDITZ, C., STAMMINGER, M., AND DRET-
TAKIS, G. 2002. Interactive visualization of complex plant
ecosystems. In IEEE, 219–226.

DONNELLY, W., AND LAURITZEN, A. 2006. Variance shadow
maps. In Proceedings of the 2006 symposium on Interactive 3D
graphics and games, ACM, 161–165.

FAN, Z., LI, H., HILLESLAND, K., AND SHENG, B. 2015. Simu-
lation and rendering for millions of grass blades. In Proceedings
of the 19th Symposium on Interactive 3D Graphics and Games,
ACM, 55–60.

FANINI, B., CALORI, L., FERDANI, D., AND PESCARIN, S. 2011.
Interactive 3d landscapes on line. ISPRS - International Archives
of the Photogrammetry, Remote Sensing and Spatial Information
Sciences 3816, 453–459.

FERNANDO, R. 2005. Percentage-closer soft shadows. In ACM
SIGGRAPH 2005 Sketches, ACM, 35.

HAMMES, J. 2001. Modeling of ecosystems as a data source for
real-time terrain rendering. In Digital Earth Moving. Springer,
98–111.

HARGROVE, W. W., HOFFMAN, F. M., AND SCHWARTZ, P. M.
2002. A fractal landscape realizer for generating synthetic maps.
Conservation Ecology 6, 1, 2.

HERZIG, P., ENGLERT, M., WAGNER, S., JUNG, Y., AND BOCK-
HOLT, U. 2013. X3d-earthbrowser: visualize our earth in your

web browser. In Proceedings of the 18th International Confer-
ence on 3D Web Technology, ACM, 139–142.

KOMODAKIS, N., PANAGIOTAKIS, C., AND TZIRITAS, G. 2005.
3d visual reconstruction of large scale natural sites and their
fauna. Signal Processing: Image Communication 20, 9, 869–
890.

LAGAE, A. 2007. Tile-Based Methods in Computer Graphics. PhD
thesis, Katholieke Universiteit Leuven.

LANE, B., AND PRUSINKIEWICZ, P. 2002. Generating spatial dis-
tributions for multilevel models of plant communities. In Pro-
ceedings of Graphics Interface, 69–80.

LIU, Q.-X., HERMAN, P. M., MOOIJ, W. M., HUISMAN, J.,
SCHEFFER, M., OLFF, H., AND VAN DE KOPPEL, J. 2014.
Pattern formation at multiple spatial scales drives the resilience
of mussel bed ecosystems. Nature communications 5.

MOLOFSKY, J., AND BEVER, J. D. 2004. A new kind of ecology?
BioScience 54, 5, 440–446.

ONRUST, B. 2015. Automatic generation of plant distributions
for existing and future natural environments using spatial data.
Master’s thesis, Delft University of Technology.

PETTIT, C. J., RAYMOND, C. M., BRYAN, B. A., AND LEWIS,
H. 2011. Identifying strengths and weaknesses of landscape
visualisation for effective communication of future alternatives.
Landscape and Urban Planning 100, 3, 231–241.

RIETKERK, M., AND VAN DE KOPPEL, J. 2008. Regular pattern
formation in real ecosystems. Trends in Ecology & Evolution 23,
3, 169–175.

SAURA, S., AND MARTÍNEZ-MILLÁN, J. 2000. Landscape pat-
terns simulation with a modified random clusters method. Land-
scape ecology 15, 7, 661–678.

SCHWARZ, C. 2014. Implications of biogeomorphic feedbacks on
tidal landscape development. PhD thesis, Radboud University
Nijmegen.

SILVA, P. B., EISENMANN, E., BIDARRA, R., AND COELHO, A.
TBP 2015. Procedural content graphs for urban modeling. In-
ternational Journal of Computer Games Technology, 12.

SMELIK, R. M., TUTENEL, T., BIDARRA, R., AND BENES, B.
2014. A survey on procedural modelling for virtual worlds. In
Computer Graphics Forum, vol. 33, 31–50.

TEMMERMAN, S., BOUMA, T., VAN DE KOPPEL, J., VAN DER
WAL, D., DE VRIES, M., AND HERMAN, P. 2007. Vegetation
causes channel erosion in a tidal landscape. Geology 35, 7, 631–
634.

VAN LAMMEREN, R., HOUTKAMP, J., COLIJN, S., HILFERINK,
M., AND BOUWMAN, A. 2010. Affective appraisal of 3d land
use visualization. Computers, environment and urban systems
34, 6, 465–475.

WANG, S.-Y., LIN, C.-K., AND TAI, W.-K. 2013. Compress-
ing 3d trees with rendering efficiency based on differential data.
IEEE Transactions on Multimedia 15, 2, 304–315.

WEIER, M., HINKENJANN, A., DEMME, G., AND SLUSALLEK,
P. 2013. Generating and rendering large scale tiled plant popu-
lations. Journal of Virtual Reality and Broadcasting 10, 1.


